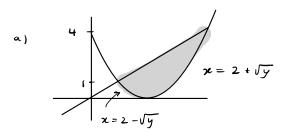
Problem 1. Sketch the region enclosed by the given curves and then set up integrals for the area of the region in two ways: with respect to x and with respect to y.

a.
$$y = (x-2)^2$$
, $y = x$
b. $y = (x-1)^2 - 1$, $y = x + 4$



Intersection points:

$$x = (x-2)^{2}$$

$$x = x^{2} - 4x + 4$$

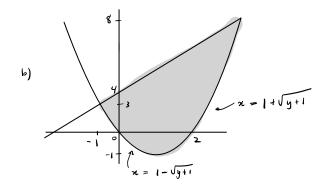
$$0 = x^{2} - 5x + 4$$

$$= (x-4)(x-1)$$

$$x = 1, 4$$

$$\int_{1}^{4} (x - (x-2)^{2}) dx$$

$$= \int_{0}^{1} (2+\sqrt{y} - (2-\sqrt{y})) dy + \int_{1}^{4} (2+\sqrt{y} - y) dy$$



Intersection points
$$x^{2}-2x=x+4$$

$$\Rightarrow x^{2}-3x-4=0$$

$$\Rightarrow (x-4)(x+1)=0$$

$$A_{vec} = \int_{-1}^{4} \left[(x+4) - (x^{2} - 2x) \right] dx$$

$$= \int_{-1}^{3} \left((1+\sqrt{y+1}) - (1-\sqrt{y+1}) \right) dy + \int_{3}^{8} \left(1+\sqrt{y+1} - (y-4) \right) dy$$

Problem 2. Consider the regions R_1, R_2, R_3 below. For each region, set up an integral for its area in two ways: with respect to x and with respect to y.

area
$$(R_1) = \int_0^8 (2-x^{1/3}) dx = \int_0^2 y^3 dy$$

area $(R_2) = \int_0^8 (x^{1/3} - \frac{1}{4}x) dx = \int_0^2 (4y - y^3) dy$
area $(R_3) = \int_0^8 \frac{1}{4}x dx = \int_0^2 (8-4y) dy$

Problem 3. Consider the solid shown below. Set up an integral for its volume, given that the radius r of the circular slice at h is \sqrt{h} .

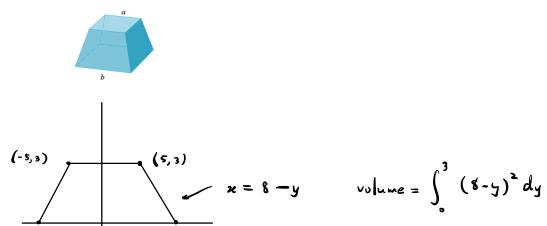
Figure 8.107

volume =
$$\int_{0}^{12} \pi \left(\sqrt{h}\right)^{2} dh$$

Problem 4. Consider the solid shown below. Set up an integral for its volume, given that r=2, R=6 and h=5.

(-2,5)
$$(2,5)$$
 $(2,5)$

Problem 5. Consider the solid shown below whose base is a square with side length b and whose top is a square with side length a. Set up an integral for its volume, given that a=10 and b=16 and its height is 3.



Problem 6. Suppose that f and g are functions that have a vertical asymptote at x=0 but are continuous for all x>0. Further, suppose that $0\leq g(x)\leq f(x)$ for all x>1. Please answer the following true false questions.

- a. If $\int_1^\infty f(x) dx$ converges then $\int_1^\infty g(x) dx$ converges.
- b. If $\int_1^\infty f(x) dx$ diverges then $\int_1^\infty g(x) dx$ diverges.
- c. If $\int_0^1 f(x) \, dx$ diverges but $\int_1^\infty f(x) \, dx$ converges, then $\int_0^\infty f(x) \, dx$ converges.
 - (a) true
 - (b) false: example: $\frac{1}{x^2} < \frac{1}{x}$ for all x > 1and $\int_{1}^{\infty} \frac{1}{x} dx$ diverges but $\int_{1}^{\infty} \frac{1}{x^2} dx$ converges
- © fake: in order for $\int_0^\infty f(x)dx$ to converge we need both $\int_0^1 f(x)dx$ and $\int_0^\infty f(x)dx$ to converge.