Math 203, Spring 2023 — Homework 1

Tim Chumley

Due February 3

Instructions. This problem set has material from Week 1 of class. \rightarrow

Problem 1. Let P = (1, 0, 2), Q = (3, 4, -1), and $\mathbf{v} = \overrightarrow{PQ}$.

- a. Write ${\bf v}$ in component form.
- b. Find the magnitude of \mathbf{v} .
- c. Find the unit vector that points in the direction opposite of $\mathbf{v}.$

d. Find the vector of length 3 that points in the direction of \mathbf{v} .

Problem 2. Let $\mathbf{u} = \langle 1, 1, -1 \rangle$ and $\mathbf{v} = \langle 2, 1, 2 \rangle$.

- a. If $\mathbf{u} = \overrightarrow{PQ}$ with basepoint P = (2, 2, 2), what must Q be?
- b. Find $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$.
- c. Explain whether $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are parallel using algebra.

 \vec{v}

у

Problem 3. For each part below, sketch $\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}$ on the same set of axes.

c.

х

Problem 4. Which of the following pairs of vectors are orthogonal.

a. $\mathbf{v} = \langle 5, 3 \rangle$, $\mathbf{w} = \langle 6, 1 \rangle$ b. $\mathbf{v} = \langle 4, 7 \rangle$, $\mathbf{w} = \langle 7, -4 \rangle$ c. $\mathbf{v} = \langle 3, 5, -1 \rangle$, $\mathbf{w} = \langle 4, -1, 8 \rangle$ d. $\mathbf{v} = \langle 1, 2, 3 \rangle$, $\mathbf{w} = \langle 0, 0, 0 \rangle$

Problem 5. Let $\mathbf{v} = \langle 5, 5 \rangle, \mathbf{w} = \langle 1, 3 \rangle$, and θ the angle between them. Find the following:

- a. $\cos \theta$.
- b. $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$.
- c. $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$.
- d. Sketch the vectors $\mathbf{v}, \mathbf{w}, \text{proj}_{\mathbf{v}} \mathbf{w}$ on the same axes, all with the same base point.

Problem 6. Let $\mathbf{v} = \langle 1, 0, 1 \rangle$, $\mathbf{w} = \langle 1, 1, 1 \rangle$, and θ the angle between them. Find the following:

- a. $\cos \theta$.
- b. $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$.
- c. $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$.

Problem 7. Let $\mathbf{u} = \langle 1, 4, 1 \rangle$ and $\mathbf{v} = \langle -1, 3, 5 \rangle$. Use orthogonal projection to find a vector \mathbf{p} that is parallel to \mathbf{v} and a vector \mathbf{x} that is orthogonal to \mathbf{v} which satisfy the equation $\mathbf{u} = \mathbf{p} + \mathbf{x}$.