Math 203, Spring 2023 - Homework 10

Tim Chumley

Due April 28

Instructions. This problem set has material from Week 13 of class.
Problem 1. Let $\mathbf{F}(x, y)=\langle x, y\rangle$ and consider the closed curve $C=C_{1}+C_{2}+C_{3}+C_{4}$ shown below, with arrows indicating the orientation of each component $C_{1}, C_{2}, C_{3}, C_{4}$. Notice that C_{1} and C_{3} are arcs of circles centered at the origin and C_{2} and C_{4} are radial line segments.. Indicate the sign (positive, negative, or zero) of each of the following line integrals.

Line integral	Sign
$\int_{C_{1}} \mathbf{F} \cdot \mathbf{n} d s$	
$\int_{C_{2}} \mathbf{F} \cdot \mathbf{n} d s$	
$\int_{C_{3}} \mathbf{F} \cdot \mathbf{n} d s$	
$\int_{C_{4}} \mathbf{F} \cdot \mathbf{n} d s$	
$\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$	

Problem 2. Repeat Problem 1 using $\mathbf{F}(x, y)=\langle-y, x\rangle$.

Line integral	Sign
$\int_{C_{1}} \mathbf{F} \cdot \mathbf{n} d s$	
$\int_{C_{2}} \mathbf{F} \cdot \mathbf{n} d s$	
$\int_{C_{3}} \mathbf{F} \cdot \mathbf{n} d s$	
$\int_{C_{4}} \mathbf{F} \cdot \mathbf{n} d s$	
$\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$	

Problem 3. For each given vector field \mathbf{F} and oriented curve C, compute $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$ by computing $\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot\left\langle g^{\prime}(t),-f^{\prime}(t)\right\rangle d t$ where $\mathbf{r}(t)=\langle f(t), g(t)\rangle, a \leq t \leq b$, is a parametrization of C. You can use Wolfram Alpha to compute the integral, but make sure to give a numerical final answer, not just a setup of the integral.
a. $\mathbf{F}(x, y)=\langle x+y, x-y\rangle, C$ is the line segment oriented from $(3,-2)$ to $(3,2)$.
b. $\mathbf{F}(x, y)=\left\langle x^{2}, y+1\right\rangle, C$ is the portion of the parabola $y=x^{2}$ oriented from $(0,0)$ to $(2,4)$.

Problem 4. For each given vector field \mathbf{F} and oriented curve C, compute $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$ by computing $\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot\left\langle g^{\prime}(t),-f^{\prime}(t)\right\rangle d t$ where $\mathbf{r}(t)=\langle f(t), g(t)\rangle, a \leq t \leq b$, is a parametrization of C. You can use Wolfram Alpha to compute the integral, but make sure to give a numerical final answer, not just a setup of the integral.
a. $\mathbf{F}(x, y)=\langle y, 0\rangle, C$ is the line segment from $(0,0)$ to $(3,3)$.
b. $\mathbf{F}(x, y)=\langle y, x\rangle, C$ is the portion of the curve $x=y^{3}$ from $(-8,-2)$ to $(8,2)$.

Problem 5. For each given vector field \mathbf{F} and piecewise smooth, closed, positively oriented curve C, compute $\operatorname{div} \mathbf{F}$ and use the Divergence Theorem to compute $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$. You can use Wolfram Alpha to compute the integral, but make sure to give a numerical final answer, not just a setup of the integral.
a. $\mathbf{F}(x, y)=\langle x-y, x+y\rangle, C$ is the closed curve composed of the parabola $y=4-x^{2}$ on $0 \leq x \leq 2$ followed by the line segment from $(2,0)$ to $(0,4)$.
b. $\mathbf{F}(x, y)=\langle-y, x\rangle, C$ is the unit circle.

Problem 6. For each given vector field \mathbf{F} and piecewise smooth, closed, positively oriented curve C, compute $\operatorname{div} \mathbf{F}$ and use the Divergence Theorem to compute $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$. You can use Wolfram Alpha to compute the integral, but make sure to give a numerical final answer, not just a setup of the integral.
a. $\mathbf{F}(x, y)=\left\langle 0, y^{2}\right\rangle, C$ is the triangle with corners at $(0,0),(0,2)$, and $(1,1)$.
b. $\mathbf{F}(x, y)=\left\langle x^{2} / 2, y^{2} / 2\right\rangle, C$ is the curve that starts at $(0,1)$, follows the parabola $y=(x-1)^{2}$ to $(3,4)$, then follows a line back to $(0,1)$.

