## Math 203, Spring 2023 — Homework 10

Tim Chumley

## Due April 28

Instructions. This problem set has material from Week 13 of class.

**Problem 1.** Let  $\mathbf{F}(x, y) = \langle x, y \rangle$  and consider the closed curve  $C = C_1 + C_2 + C_3 + C_4$ shown below, with arrows indicating the orientation of each component  $C_1, C_2, C_3, C_4$ . Notice that  $C_1$  and  $C_3$  are arcs of circles centered at the origin and  $C_2$  and  $C_4$  are radial line segments.. Indicate the sign (positive, negative, or zero) of each of the following line integrals.



| Line integral                                | Sign |
|----------------------------------------------|------|
| $\int_{C_1} \mathbf{F} \cdot \mathbf{n}  ds$ |      |
| $\int_{C_2} \mathbf{F} \cdot \mathbf{n}  ds$ |      |
| $\int_{C_3} \mathbf{F} \cdot \mathbf{n}  ds$ |      |
| $\int_{C_4} \mathbf{F} \cdot \mathbf{n}  ds$ |      |
| $\oint_C \mathbf{F} \cdot \mathbf{n}  ds$    |      |

| Line integral                                | Sign |
|----------------------------------------------|------|
| $\int_{C_1} \mathbf{F} \cdot \mathbf{n}  ds$ |      |
| $\int_{C_2} \mathbf{F} \cdot \mathbf{n}  ds$ |      |
| $\int_{C_3} \mathbf{F} \cdot \mathbf{n}  ds$ |      |
| $\int_{C_4} \mathbf{F} \cdot \mathbf{n}  ds$ |      |
| $\oint_C \mathbf{F} \cdot \mathbf{n}  ds$    |      |

**Problem 2.** Repeat Problem 1 using  $\mathbf{F}(x, y) = \langle -y, x \rangle$ .

**Problem 3.** For each given vector field  $\mathbf{F}$  and oriented curve C, compute  $\int_C \mathbf{F} \cdot \mathbf{n} \, ds$  by computing  $\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \langle g'(t), -f'(t) \rangle \, dt$  where  $\mathbf{r}(t) = \langle f(t), g(t) \rangle, a \leq t \leq b$ , is a parametrization of C. You can use Wolfram Alpha to compute the integral, but make sure to give a numerical final answer, not just a setup of the integral.

- a.  $\mathbf{F}(x,y) = \langle x+y, x-y \rangle$ , C is the line segment oriented from (3,-2) to (3,2).
- b.  $\mathbf{F}(x,y) = \langle x^2, y+1 \rangle$ , C is the portion of the parabola  $y = x^2$  oriented from (0,0) to (2,4).

**Problem 4.** For each given vector field  $\mathbf{F}$  and oriented curve C, compute  $\int_C \mathbf{F} \cdot \mathbf{n} \, ds$  by computing  $\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \langle g'(t), -f'(t) \rangle \, dt$  where  $\mathbf{r}(t) = \langle f(t), g(t) \rangle, a \leq t \leq b$ , is a parametrization of C. You can use Wolfram Alpha to compute the integral, but make sure to give a numerical final answer, not just a setup of the integral.

- a.  $\mathbf{F}(x,y) = \langle y, 0 \rangle$ , C is the line segment from (0,0) to (3,3).
- b.  $\mathbf{F}(x,y) = \langle y, x \rangle$ , C is the portion of the curve  $x = y^3$  from (-8, -2) to (8, 2).

**Problem 5.** For each given vector field  $\mathbf{F}$  and piecewise smooth, closed, positively oriented curve C, compute div  $\mathbf{F}$  and use the Divergence Theorem to compute  $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ . You can use Wolfram Alpha to compute the integral, but make sure to give a numerical final answer, not just a setup of the integral.

- a.  $\mathbf{F}(x,y) = \langle x y, x + y \rangle$ , C is the closed curve composed of the parabola  $y = 4 x^2$ on  $0 \le x \le 2$  followed by the line segment from (2,0) to (0,4).
- b.  $\mathbf{F}(x,y) = \langle -y, x \rangle$ , C is the unit circle.

**Problem 6.** For each given vector field  $\mathbf{F}$  and piecewise smooth, closed, positively oriented curve C, compute div  $\mathbf{F}$  and use the Divergence Theorem to compute  $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ . You can use Wolfram Alpha to compute the integral, but make sure to give a numerical final answer, not just a setup of the integral.

- a.  $\mathbf{F}(x,y) = \langle 0, y^2 \rangle$ , C is the triangle with corners at (0,0), (0,2), and (1,1).
- b.  $\mathbf{F}(x,y) = \langle x^2/2, y^2/2 \rangle$ , C is the curve that starts at (0,1), follows the parabola  $y = (x-1)^2$  to (3,4), then follows a line back to (0,1).