Math 203, Spring 2023 - Homework 7

Tim Chumley

Due April 7

Instructions. This problem set has material from Week 9 of class.
Problem 1. For each function $f(x, y)$ and region R given below, set up $\iint_{R} f(x, y) d A$ using polar coordinates. No need to compute the integrals.
a. $f(x, y)=4 x y, R$ is the portion of the annulus with inner and outer radiuses 1 and 2 in the third and fourth quadrants of the $x y$-plane.
b. $f(x, y)=1-x^{2}-y^{2}, R$ is the portion of the disk of radius 3 in the first, third, and fourth quadrants of the $x y$-plane.
c. $f(x, y)=x+y, R$ is the region between $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=16$ in the right half of the $x y$-plane.
d. $f(x, y)=1, R$ is the region between the circles $(x-1)^{2}+y^{2}=1$ and $(x-3)^{2}+y^{2}=9$.

Problem 2. For each double integral below, (1) sketch the region of integration, (2) and set up the integral in polar coordinates. No need to compute the integrals.
a. $\int_{0}^{\sqrt{2} / 2} \int_{-\sqrt{1-y^{2}}}^{-y}(2 x+y) d x d y$
b. $\int_{-\sqrt{2} / 2}^{\sqrt{2} / 2} \int_{-x}^{\sqrt{1-x^{2}}}(x+y) d y d x+\int_{\sqrt{2} / 2}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}(x+y) d y d x$
c. $\int_{0}^{1} \int_{\sqrt{1-x^{2}}}^{\sqrt{4-x^{2}}} x d y d x+\int_{1}^{2} \int_{0}^{\sqrt{4-x^{2}}} x d y d x$.

Problem 3. Let D be the region shown below. Set up the triple integral $\iiint_{D} d V$ for the volume of D in three ways: using $d V$ given by (1) $d z d y d x$, (2) $d x d z d y$, and (3) $d y d z d x$.

Problem 4. Let D be the region shown below. Set up the triple integral $\iiint_{D} d V$ for the volume of D in three ways: using $d V$ given by (1) $d z d y d x$, (2) $d x d z d y$, and (3) $d y d z d x$.

Problem 5. Let D be the region shown below. Set up the triple integral $\iiint_{D} d V$ for the volume of D in three ways: using $d V$ given by (1) $d z d y d x$, (2) $d x d z d y$, and (3) $d y d z d x$.

Problem 6. Let D be the region shown below. Set up the triple integral $\iiint_{D} d V$ for the volume of D in three ways: using $d V$ given by (1) $d z d y d x$, (2) $d x d z d y$, and (3) $d y d z d x$.

Problem 7. For each solid D and corresponding density f described below, set up a triple integral $\iiint_{D} f(r, \theta, z) d V$ in cylindrical coordinates to find the mass of the solid.
a. $f(x, y, z)=z, D$ bounded by the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$ and between the planes $z=0$ and $z=10$.
b. $f(x, y, z)=\sqrt{x^{2}+y^{2}}+1, D$ given by the upper half of the unit ball centered at the origin.
c. $f(x, y, z)=x+y, D$ bounded by the cone $z=4-\sqrt{x^{2}+y^{2}}$ and the plane $z=0$.

Problem 8. For each triple integral below, given in cylindrical coordinates make a sketch of the region of integration and give a brief description of the region in words.
a. $\int_{0}^{2 \pi} \int_{3}^{4} \int_{0}^{5} r d z d r d \theta$
b. $\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{2-r} r d z d r d \theta$
c. $\int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-r^{2}}+b} r d z d r d \theta$

