Math 203, Spring 2023 — Homework 7

Tim Chumley

Due April 7

Instructions. This problem set has material from Week 9 of class.

Problem 1. For each function f(x, y) and region R given below, set up $\iint_R f(x, y) dA$ using polar coordinates. No need to compute the integrals.

- a. f(x,y) = 4xy, R is the portion of the annulus with inner and outer radiuses 1 and 2 in the third and fourth quadrants of the xy-plane.
- b. $f(x,y) = 1 x^2 y^2$, R is the portion of the disk of radius 3 in the first, third, and fourth quadrants of the xy-plane.
- c. f(x,y) = x + y, R is the region between $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$ in the right half of the xy-plane.
- d. f(x,y) = 1, R is the region between the circles $(x-1)^2 + y^2 = 1$ and $(x-3)^2 + y^2 = 9$.

Problem 2. For each double integral below, (1) sketch the region of integration, (2) and set up the integral in polar coordinates. No need to compute the integrals.

a.
$$\int_{0}^{\sqrt{2}/2} \int_{-\sqrt{1-y^{2}}}^{-y} (2x+y) \, dx \, dy$$

b.
$$\int_{-\sqrt{2}/2}^{\sqrt{2}/2} \int_{-x}^{\sqrt{1-x^{2}}} (x+y) \, dy \, dx + \int_{\sqrt{2}/2}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} (x+y) \, dy \, dx$$

c.
$$\int_{0}^{1} \int_{\sqrt{1-x^{2}}}^{\sqrt{4-x^{2}}} x \, dy \, dx + \int_{1}^{2} \int_{0}^{\sqrt{4-x^{2}}} x \, dy \, dx.$$

Problem 3. Let *D* be the region shown below. Set up the triple integral $\iiint_D dV$ for the volume of *D* in three ways: using dV given by (1) dzdydx, (2) dxdzdy, and (3) dydzdx.

Problem 4. Let *D* be the region shown below. Set up the triple integral $\iiint_D dV$ for the volume of *D* in three ways: using dV given by (1) dzdydx, (2) dxdzdy, and (3) dydzdx.

Problem 5. Let *D* be the region shown below. Set up the triple integral $\iiint_D dV$ for the volume of *D* in three ways: using dV given by (1) dzdydx, (2) dxdzdy, and (3) dydzdx.

Problem 6. Let *D* be the region shown below. Set up the triple integral $\iiint_D dV$ for the volume of *D* in three ways: using dV given by (1) dzdydx, (2) dxdzdy, and (3) dydzdx.

Problem 7. For each solid D and corresponding density f described below, set up a triple integral $\iiint_D f(r, \theta, z) dV$ in cylindrical coordinates to find the mass of the solid.

- a. f(x, y, z) = z, D bounded by the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$ and between the planes z = 0 and z = 10.
- b. $f(x, y, z) = \sqrt{x^2 + y^2} + 1$, D given by the upper half of the unit ball centered at the origin.
- c. f(x, y, z) = x + y, D bounded by the cone $z = 4 \sqrt{x^2 + y^2}$ and the plane z = 0.

Problem 8. For each triple integral below, given in cylindrical coordinates make a sketch of the region of integration and give a brief description of the region in words.

- a. $\int_0^{2\pi} \int_3^4 \int_0^5 r \, dz dr d\theta$
- b. $\int_0^\pi \int_0^1 \int_0^{2-r} r \, dz \, dr \, d\theta$

c.
$$\int_0^{2\pi} \int_0^a \int_0^{\sqrt{a^2 - r^2} + b} r \, dz \, dr \, d\theta$$