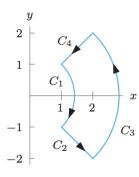
Math 203, Spring 2023 — Homework 9

Tim Chumley

Due April 21

Instructions. This problem set has material from Week 12 of class.

Problem 1. Let $\mathbf{F}(x, y) = \langle x, y \rangle$ and consider the closed curve $C = C_1 + C_2 + C_3 + C_4$ shown below, with arrows indicating the orientation of each component C_1, C_2, C_3, C_4 . Notice that C_1 and C_3 are arcs of circles centered at the origin and C_2 and C_4 are radial line segments.. Indicate the sign (positive, negative, or zero) of each of the following line integrals.



Line integral	Sign
$\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$	
$\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$	
$\int_{C_3} \mathbf{F} \cdot d\mathbf{r}$	
$\int_{C_4} \mathbf{F} \cdot d\mathbf{r}$	
$\oint_C \mathbf{F} \cdot d\mathbf{r}$	

Line integral	Sign
$\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$	
$\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$	
$\int_{C_3} \mathbf{F} \cdot d\mathbf{r}$	
$\int_{C_4} \mathbf{F} \cdot d\mathbf{r}$	
$\oint_C \mathbf{F} \cdot d\mathbf{r}$	

Problem 2. Repeat Problem 1 using $\mathbf{F}(x, y) = \langle -y, x \rangle$.

Problem 3. For each given vector field **F** and oriented curve *C*, compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ by computing $\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$ where $\mathbf{r}(t), a \leq t \leq b$, is a parametrization of *C*.

- a. $\mathbf{F}(x,y)=\langle x,x+y\rangle,\,C$ is the oriented curve $y=x^2$ from (0,0) to (1,1)
- b. $\mathbf{F}(x,y) = \langle xy, x \rangle$, C is the oriented curve $y = x^3$ from (-1, -1) to (1, 1)

Problem 4. For each given vector field **F** and oriented curve *C*, compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ by computing $\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$ where $\mathbf{r}(t), a \leq t \leq b$, is a parametrization of *C*.

- a. $\mathbf{F}(x,y) = \langle 1, xy \rangle$, C is the right half of the unit circle oriented from (0,-1) to (0,1)
- b. $\mathbf{F}(x,y) = \langle x-y, x^2 \rangle$, C consists of two line segments, oriented from (-1,0) to (-1,1) to (4,1)

Problem 5. For each given vector field **F**, show that it's conservative by finding a potential function f and use the Fundamental Theorem of Line Integrals to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is any piecewise smooth curve from (1, 2) to (3, 4).

- a. $\mathbf{F}(x,y) = \langle y+1,x \rangle$
- b. $\mathbf{F}(x,y) = \langle 2x + y, 2y + x \rangle$

Problem 6. For each given vector field \mathbf{F} , show that it's conservative by finding a potential function f and use the Fundamental Theorem of Line Integrals to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is any piecewise smooth curve from (1, 2) to (3, 4).

a. $\mathbf{F}(x, y) = \langle 2x, 2y \rangle$

b.
$$\mathbf{F}(x,y) = \left\langle \frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2} \right\rangle$$

Problem 7. For each given vector field **F** and piecewise smooth, closed, positively oriented curve C, compute curl **F** and use Green's Theorem to compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$.

- a. $\mathbf{F}(x,y) = \langle x y, x + y \rangle$, C is the parabola $y = x^2$ from (0,0) to (2,4) along with the line segment from (2,4) to (0,0).
- b. $\mathbf{F}(x,y) = \langle -y, x \rangle$, C is the unit circle

Problem 8. For each given vector field \mathbf{F} and piecewise smooth, closed, positively oriented curve C, compute curl \mathbf{F} and use Green's Theorem to compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$.

- a. $\mathbf{F}(x,y) = \langle 0, x^2 \rangle$, C is the triangle with vertices (0,0), (2,0), and (1,1)
- b. $\mathbf{F}(x,y) = \langle x+y, 2x \rangle$, C is the piecewise smooth curve bounding the region between $y = 1 x^2$ and y = x 1.