Problem 1. Let $\mathbf{F}(x,y) = \langle xy, x+y \rangle$, let C be the positive oriented square with vertices (0,0), (1,0), (0,1), and (1,1), and let D be the region enclosed by C. See the image below.

- a. Compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$ by computing separate line integrals along the 4 sides of the square. To save time split the work up with a partner or two.
- b. Compute $\iint_D \operatorname{curl} \mathbf{F} \, dA$ and compare with your previous answer. Do they match? Why?

$$\vec{F}_{1}(t) = \langle t, 0 \rangle, \quad 0 \leq t \leq 1$$

$$\vec{F}_{2}(t) = \langle 1, t \rangle, \quad 0 \leq t \leq 1$$

$$\vec{F}_{3}(t) = \langle t, 1 \rangle, \quad 0 \leq t \leq 1$$

$$\vec{F}_{4}(t) = \langle 0, t \rangle, \quad 0 \leq t \leq 1$$

$$\vec{F}_{4}(t) = \langle 0, t \rangle, \quad 0 \leq t \leq 1$$

$$\vec{F}_{5}(t) = \vec{F}_{7}(t) = \vec{F}_{7}(t) + \vec{F}_{$$

$$cur|\vec{F} = 1 - x. \qquad \iint_{D} cur|\vec{F} dA = \int_{0}^{1} \int_{0}^{1} (1-x) dy dx$$
$$= \int_{0}^{1} (1-x) dx$$
$$= 1 - \frac{1}{2} = \frac{1}{2}$$

Problem 2. Let $\mathbf{F}(x,y) = \langle x^3, 4x \rangle$, let C be the oriented curve from A = (-1,0) to B = (-1,-1). See the image below. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ using Green's Theorem. Warning: C is not a closed curve. How can you get around this issue?

Let D be the oriented line segment from B to A and let R be the region enclosed by C and D. Then $\int_{C} \vec{F} \cdot d\vec{r} + \int_{D} \vec{F} \cdot d\vec{r} = \iint_{R} \text{curl} \vec{F} dA$

Note $\vec{r}(t) = \langle -1, t \rangle$, $-1 \leq t \leq 0$ parametrizes D and

$$\int_{D} \vec{F} \cdot d\vec{r} = \int_{-1}^{D} \langle -1, -4 \rangle \cdot \langle \cdot, 1 \rangle dt$$
$$= \int_{-1}^{0} -4 dt = -4.$$

Further, curlf = 4, so

Therefore $\int_{C} \vec{F} \cdot d\vec{r} = \iint_{R} curl\vec{F} dA - \iint_{D} \vec{F} \cdot d\vec{r} = 20$

Problem 3. Let $\mathbf{F}(x,y) = \langle 2xe^y, x + x^2e^y \rangle$, $\mathbf{G} = \langle 0,x \rangle$, and let C be the quarter circle oriented from A = (4,0) to B = (0,4). The image below shows \mathbf{F} along with C.

- a. Explain why ${f F}$ does not have a potential function.
- b. Find a function f such that $\mathbf{F} = \mathbf{G} + \nabla f$.
- c. Let C_1 be the line segment from (0,0) to A and let C_2 be the line segment from (0,0) to B. Find $\int_{C_1} \mathbf{G} \cdot d\mathbf{r}$ and $\int_{C_2} \mathbf{G} \cdot d\mathbf{r}$. These integrals can be done without computation and instead just thinking about how the vectors of \mathbf{G} are related to the tangent vectors along C_1 and C_2 .
- d. Use Green's Theorem and part c. to compute $\int_C \mathbf{G} \cdot d\mathbf{r}$.
- e. Use parts b. and d. to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.

- (a) Note curl $\vec{F} = 1$. Since curl $\vec{F} \neq 0$, \vec{F} is not conservative by the curl test.
- $\oint \vec{F} \vec{G} = \langle 2\pi e^y, x^2 e^y \rangle. \quad \text{If} \quad \nabla f = \vec{F} \vec{G},$ then $f_x = 2\pi e^y$, which implies $f(x,y) = x^2 e^y + C(y)$.

 Further, $f_y = x^2 e^y$ implies $x^2 e^y = \frac{\partial}{\partial y} \left(x^2 e^y + C(y) \right)$

which implies C'(y) = 0, so C(y) is a constant.

Therefore f(x,y) = x2ey.

 $C_{i} = 0 \quad \text{since } \vec{G} \quad \text{is orthogonal to } C_{i}$ $\int_{C_{i}} \vec{G} \cdot d\vec{r} = 0 \quad \text{since } \vec{G} = \langle 0, 0 \rangle \quad \text{along } C_{2}.$

(d) Let R be the region enclosed by C, C,, and Cz.

Note curl G = 1. Then

$$\int_{C_1} \vec{G} \cdot d\vec{r} + \int_{C} \vec{G} \cdot d\vec{r} - \int_{C_2} \vec{G} \cdot d\vec{r} = \iint_{R} cw |\vec{G}| dA$$

$$= avea(R)$$

$$= \frac{1}{4} \pi (4)^2$$

$$= 4\pi$$

Thus $\int_{c} \vec{G} \cdot d\vec{r} = 4\pi$.

@ Observe that

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \vec{G} \cdot d\vec{r} + \int_{C} \nabla f \cdot d\vec{r}$$

$$= 4\pi + f(B) - f(A)$$

$$= 4\pi - 16.$$