
Problem 1. Each image below shows a vector \mathbf{F} along with a closed curve C that we should assume is positively oriented. Determine the sign (positive, negative, or zero) of $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ in each case.

Problem 2. Let $\mathbf{F}(x, y) = \langle x - y, x + y \rangle$. Let C_1 be the parabola $y = x^2$ from (0, 0) to (2, 4), let C_2 be the line segment from (2, 4) to (0, 0), and let $C = C_1 + C_2$. Sketch \mathbf{F} in CalcPlot3d to estimate whether the flux integral $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ is positive, negative, or zero and then compute it.

Problem 3. Let $\mathbf{F}(x, y) = \langle -y, x \rangle$ and let *C* be the unit circle oriented counter-clockwise. Sketch \mathbf{F} in CalcPlot3d to estimate whether the flux integral $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ is positive, negative, or zero and then compute it.