Math 203 — Divergence Theorem

Problem 1. Let $\mathbf{F} = \langle x - y, x + y \rangle$, let *C* be the circle of radius 2 centered at the origin, and let *R* be the region enclosed by *C*. Verify the Divergence Theorem for this example. That is, compute $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ using a parametrization and compute $\iint_R \operatorname{div} F \, dA$.

Problem 2. Try Problem 1 using C as the closed, positively oriented curve comprising the parabola $y = x^2$ for $0 \le x \le 2$ and the line segment from (2, 4) to (0, 0).

Problem 3. Let **F** be a vector field whose domain is all of \mathbb{R}^2 with the property that div $\mathbf{F} = 0$ and let C_1 and C_2 be two non-intersecting curves each oriented so that they start from (0,0) and go to (1,1). Suppose $\int_{C_1} \mathbf{F} \cdot \mathbf{n} \, ds = 5$. Find the value of $\int_{C_2} \mathbf{F} \cdot \mathbf{n} \, ds$ and explain your reasoning.