Math 203 - Divergence Theorem

Problem 1. Let $\mathbf{F}=\langle x-y, x+y\rangle$, let C be the circle of radius 2 centered at the origin, and let R be the region enclosed by C. Verify the Divergence Theorem for this example. That is, compute $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$ using a parametrization and compute $\iint_{R} \operatorname{div} F d A$.
Problem 2. Try Problem 1 using C as the closed, positively oriented curve comprising the parabola $y=x^{2}$ for $0 \leq x \leq 2$ and the line segment from $(2,4)$ to $(0,0)$.

Problem 3. Let \mathbf{F} be a vector field whose domain is all of \mathbb{R}^{2} with the property that $\operatorname{div} \mathbf{F}=0$ and let C_{1} and C_{2} be two non-intersecting curves each oriented so that they start from $(0,0)$ and go to $(1,1)$. Suppose $\int_{C_{1}} \mathbf{F} \cdot \mathbf{n} d s=5$. Find the value of $\int_{C_{2}} \mathbf{F} \cdot \mathbf{n} d s$ and explain your reasoning.

