Math 203 — Practice with line integrals

Problem 1. Let $\mathbf{F}(x,y) = \langle xy, x+y \rangle$, let C be the positively oriented square with vertices (0,0), (1,0), (0,1), and (1,1), and let D be the region enclosed by C. See the image below.

- a. Compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$ by computing separate line integrals along the 4 sides of the square. To save time split the work up with a partner or two.
- b. Compute $\iint_D \operatorname{curl} \mathbf{F} dA$ and compare with your previous answer. Do they match? Why?

Problem 2. Let $\mathbf{F}(x,y) = \langle x^3, 4x \rangle$, let C be the oriented curve from A = (-1,0) to B = (-1,-1) shown below. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ using Green's Theorem. Warning: C is not a closed curve. How can you get around this issue?

Problem 3. Let $\mathbf{F}(x,y) = \langle 2xe^y, x + x^2e^y \rangle$, $\mathbf{G} = \langle 0, x \rangle$, and let C be the quarter circle oriented from A = (4,0) to B = (0,4). The image below shows \mathbf{F} along with C.

- a. Explain why **F** does not have a potential function.
- b. Find a function f such that $\mathbf{F} = \mathbf{G} + \nabla f$.
- c. Let C_1 be the line segment from (0,0) to A and let C_2 be the line segment from (0,0) to B. Find $\int_{C_1} \mathbf{G} \cdot d\mathbf{r}$ and $\int_{C_2} \mathbf{G} \cdot d\mathbf{r}$. These integrals can be done without computation and instead just thinking about how the vectors of \mathbf{G} are related to the tangent vectors along C_1 and C_2 .
- d. Use Green's Theorem and part c. to compute $\int_C \mathbf{G} \cdot d\mathbf{r}$.
- e. Use parts b. and d. to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.

