# Chaos and Feigenbaum's Constant

0

0

0

0

0

0

Dynamical Systems Suravi Rajbhandari '24 Chuhan Wang '24 Jenny Yu '24 Feifan Zhang '24

 $\cap$ 

0

0

0

0

## The orbit diagram





Orbit diagram: the dynamics of Qc for many different c values in one picture(an attempt)



In the orbit diagram we plot the parameter *c* on the horizontal axis versus the *asymptotic orbit* of O under *Qc* on the vertical axis. We use the orbit of the critical point(O) to plot the orbit diagram.



## Definition

# Suppose $F: \mathbb{R} \rightarrow \mathbb{R}$ . A point *x*O is a *critical point* of *F* if F'(xO) = O.

(O is the only critical point of *Qc*)



As c decreases, we seem to see a succession of period-doubling bifurcations. It seems that periodic points first appear in the order 1, 2, 4, 8,..., 2^n

In each period-n window, we seem to see the appearance of an attracting n-cycle followed by a succession of period-doubling bifurcations.



The orbit diagram appears to be self-similar: when we magnify certain portions of the picture, the resulting image bears a striking resemblance to the original figure.







It appears that there is a large set of c-values for which the orbit of O is not attracted to an attracting cycle.





This is a glimpse of **chaotic behavior**.

## The Period Doubling Route to Chaos

2.







Figure : Graphs of Q<sup>2</sup><sub>C</sub>



### We can see that the graphs of $Q_c^2$ resembles very closely to the corresponding graph of $Q_c$ only on a much smaller interval







Figure : Graphs of Q<sub>c</sub>

Figure : Graphs of  $Q_{C}^{2}$ 





Figure : Graphs of  $Q^2_{\ C}$ 

We can say that the function  $Q^2_c$  undergoes a similar sequence of dynamical behaviors on this interval as Qc did on the larger interval (again, because they resemble each other).

\_\_\_\_\_\_

So we can expect a small part of  $Q^4_{\ c}$  to look similar to  $Q^2_{\ c}$ 



#### This is the beginning of a process called **renormalization**





### After what we've seen, how do we understand renormalization?

When we zoom into a small subinterval of the graph of the previous stage, the map that we get resembles the previous stage.



At the n<sup>th</sup> stage, we find a tiny subinterval on which  $Q_{c}^{2n}$ resembles the original function. In particular, as c decreases, the graph of  $Q_{c}^{2n}$  make the transition from a saddle-node bifurcation, through a period doubling, and on into the **chaotic** regime.



This right here is a saddle node bifurcation



This is a saddle node bifurcation too but in the context of  $Q_c^2$ , it is period doubling.



At the n<sup>th</sup> stage, we find a tiny subinterval on which  $Q_{c}^{2n}$ resembles the original function. In particular, as c decreases, **the graph of Q\_{c}^{2n} make the transition from a saddle-node bifurcation , through a period doubling, and on into the chaotic regime.** 



## **3. Feigenbaum's Constant**



### The Formation of Chaos



#### **Period-Doubling Bifurcation Points**



- A period doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory
- The new one doubles the period of the original .

# Definition of Feigenbaum Constant

- The Feigenbaum constant is the limiting ratio of each bifurcation interval to the next between every period doubling.
- Given an are discrete values of a at the nth period doubling point, the limit is shown as below:

$$\delta = \lim_{n o \infty} rac{a_{n-1} - a_{n-2}}{a_n - a_{n-1}} = 4.669\,201\,609\,\dots,$$

•  $F(x) = x^2 + c$ 



~~//~

| n | Period = $2^n$ | Bifurcation Value | Ratio = $C_{n-1} - C_{n-2} / C_n - C_{n-2}$                                               |
|---|----------------|-------------------|-------------------------------------------------------------------------------------------|
| 1 | 2              | -0.75             | /                                                                                         |
| 2 | 4              | -1.25             | /                                                                                         |
| 3 | 8              | -1.3680989        | 4.2337                                                                                    |
| 4 | 16             | -1.3940462        | 4.5515                                                                                    |
| 5 | 32             | -1.3996312        | 4.6639                                                                                    |
| 6 | 64             | -1.4008287        | 4.6682                                                                                    |
|   |                | 29                | $\delta = \lim_{n 	o \infty} rac{a_{n-1} - a_{n-2}}{a_n - a_{n-1}} = 4.669201609\ldots,$ |

\_\_\_\_\_

30

STEPS:

- 1. Compute the first 2<sup>n</sup> points on the orbit of the critical point
- 2. Record the values in tabular form
- 3. Use calculator to compute the ratios.

## **Computing Feigenbaum's Constant**



\_\_\_\_\_\_

#### Trying it with hand:

Goal: Finding values of C<sub>i</sub> where O is a periodic point of  $Qc_i(x) = x^2 + c$  of prime period 2<sup>i</sup> where i = 0,1,2,4,5,6 ...

- > With the c values found, we can compute the ratio between every period doubling

•••

-> Because it is a lot of algebra, we can use a MATLAB code to compute the C values for us!



\_\_\_\_\_

|   |        |    | $\mathbf{O}^{*}\mathbf{O}^{*}$                                     |
|---|--------|----|--------------------------------------------------------------------|
|   | 1      |    | format long                                                        |
|   | 2      |    | n = 10; % number of c values to find                               |
|   | 3      |    | c = zeros(1,n);                                                    |
|   | 4      |    | delta = zeros(1,n-1);                                              |
|   | 5      |    | c(1) = 0;                                                          |
|   |        |    | c(2) = -1;                                                         |
|   | 6<br>7 |    | delta(1) = 4;                                                      |
|   | 8      |    |                                                                    |
|   | 9      |    |                                                                    |
|   | 10     | Ę  | for $j = 2:(n-1)$                                                  |
|   | 11     |    | alpha_0 = c(j) + (c(j) - c(j-1))/delta(j-1); % initial guess for c |
|   | 12     |    | c(j+1) = approximate(j, alpha_0);                                  |
|   | 13     |    | delta(j) = ((c(j)) - (c(j-1)))/((c(j+1))-(c(j)));                  |
|   | 14     | L  | end                                                                |
|   | 15     |    | delta                                                              |
|   | 16     |    |                                                                    |
|   | 17     | Ę  | <pre>function c_value = approximate(i, alpha_0)</pre>              |
|   | 18     |    | m = 50; % number of steps when approximating a c value             |
|   | 19     |    | alpha = alpha_0;                                                   |
|   | 20     | Ę. | for $j = 1:m$                                                      |
|   | 21     |    | x = 0; xprime = 0;                                                 |
|   | 22     | Ē  | for $k = 1:2^{i}$                                                  |
| 1 | 23     |    | xprime = 2*x*xprime + 1;                                           |
|   | 24     |    | $x = x^2 + alpha;$                                                 |
|   | 25     | -  | end                                                                |
|   | 26     |    | alpha = alpha – x/xprime;                                          |
|   | 27     | -  | end                                                                |
|   | 28     |    | c_value = alpha;                                                   |
|   | 29     | L  | end                                                                |
|   | 30     |    |                                                                    |



 $- \sqrt{-}$ 

... For  $x^2 + c$ ,



\_\_\_\_\_\_

Conclusion

-> We can see that as we proceed with finding the c-value of the function, the ratio of the intervals between bifurcation points approaches Feigenbaum's constant.



### Significance of Feigenbaum's constant

- Universal constant of chaos theory (at first it was only discovered for the logistic maps)
- Feigenbaum's constant appears in problems of fluid-flow turbulence, electronic oscillators, chemical reactions, etc.





Theorem: If xO is an attracting periodic point for F, there is a critical point of F whose orbit is attracted to the orbit of xO.

This theorem explains why we see at most one attracting periodic orbit for the quadratic family  $Qc(x) = x^2+c$ .