\$ 4.2 Functional Limits

of the definition)

Our goal in this section is to make precise the meaning of limits of functions: $\lim_{x\to c} f(x) = L$.

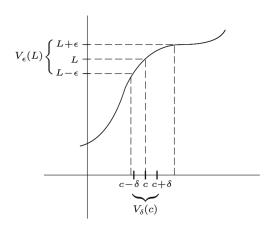


Figure 4.4: Definition of Functional Limit.

https://www.desmos.com/calculator/iejhw8zhqd

Example Give an
$$\varepsilon$$
-8 proof showing that if $f: \mathbb{R} \to \mathbb{R}$ is given by

$$f(x) = \begin{cases} 2x+1 & x\neq 3 \\ 0 & x=3 \end{cases}$$

$$\left| f(x) - 7 \right| = \left| 2x + 1 - 7 \right|$$

$$= 2 \left| x - 3 \right|$$

$$< 2 \delta$$

Notice S can depend on ε (but it should not depend on z).

Example Let $f: |\mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Give on $\varepsilon - S$ proof showing $\lim_{x \to a} f(x) = |b|$.

Proof Let E>O. Define S= min{1, E/4}

Suppose x ell and Oc/2-4/68. Then

|f(x)-16|= |x-4||x+4|

< 8/2+41.

Observe that

|x+4| = |x-4+8| $\leq |x-4|+8$

< \$ + 8

£ 9

where the last mequality is because 8 = 1. Therefore

|f(x)-16| < 98 5 E.

Problem 1. For each example below, give an ϵ - δ proof that $\lim_{x\to c} f(x) = L$.

a.
$$f(x) = \begin{cases} x^2 \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
, $c = 0$, $L = 0$

b.
$$f(x) = x^2$$
, $c = -3$, $L = 9$

C Let
$$E>0$$
 and define $S=\underbrace{E^{1/3}}$. Suppose $x\in \mathbb{R}$ and $0<|x|. Then
$$|f(x)-L|=|x^2\sin\left(\frac{1}{x}\right)|$$$

$$\leq |x|^2$$
 $\leq \delta^2$

(b) Let
$$\epsilon > 0$$
 and define $S = \min\{1, \frac{\epsilon}{4}\}$. Suppose $x \in \mathbb{R}$ and $0 < |x+3| < 5$

$$|f(x) - L| = |x^2 - 9|$$

$$= |x - 3||x + 3|$$

$$\leq \left(|x| + 3 \right) |x + 3|$$

$$< \left(|x| + 3 \right) \delta$$

Observe that

$$|x| = |x+3-3| \le |x+3| + 3 < \delta + 3 \le 4$$

and s.

Theorem Let $f:A \rightarrow \mathbb{R}$ and let $c \in \mathbb{R}$ be a limit point of A. Then the following are equivalent:

- (1) $\lim_{x\to c} f(x) = L$
- (2) for every sequence $(x_n) \in A \setminus \{c\}$ such that $x_n \to c$, it is the case that $f(x_n) \to L$.

Proof (=>) Let $(x_n) \subseteq A \setminus \{c\}$ be a sequence such that $x_n \to c$. We must show $f(x_n) \to L$.

Let $\varepsilon > 0$. Since $\lim_{x \to c} f(x) = L$, those exists $\delta > 0$ such that $|f(z) - L| < \varepsilon$ whenever $z \in A$ and $0 < |x - c| < \delta$. Since $z_n \to c$, there exists $N \in N$.

Such that $|x_n - c| < \delta$ when $n \ge N$, Suppose $n \ge N$.

Then $x_n \in A$ and $0 < |x_n - c| < \delta$, which implies $|f(x_n) - L| < \varepsilon$.