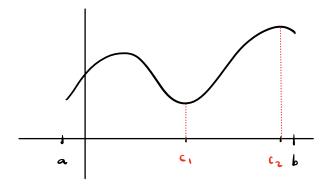
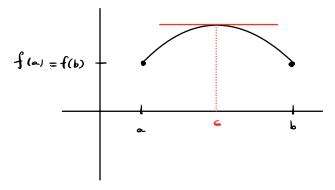
Theorem 1 (Interior Extremum Theorem). Let f be differentiable on the open interval (a,b). If f achieves a maximum value at some point $c \in (a,b)$, then f'(c) = 0. The same holds if f(c) is a minimum value.

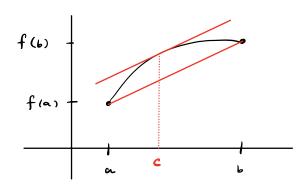


Theorem 2 (Rolle's Theorem). Let f be a function that is continuous on [a,b] and differentiable on (a,b). If f(a)=f(b) then there exists a point $c\in(a,b)$ where f'(c)=0.



Theorem 3 (Mean Value Theorem). Let f be a function that is continuous on [a,b] and differentiable on (a,b). Then there exists a point $c \in (a,b)$ so that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$



Problem 1. The following questions outline a sequential proof of the Interior Extremum Theorem. Assume that f is differentiable on the open interval (a,b) and assume that f achieves a maximum value at the point $c \in (a,b)$. That is, assume that $f(c) \geq f(x)$ for all $x \in (a,b)$. The case where f(c) is a minimum value is similar and left for you to think about on your own.

- a. Let $(x_n)\subseteq (a,c)$ and $(y_n)\subseteq (c,b)$ be sequences such that $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=c.$
 - 1. Is the difference quotient

$$\frac{f(x_n) - f(c)}{x_n - c}$$

nonpositive or nonnegative for each $n\geq 1?$ Try thinking about the sign of the numerator and denominator separately.

2. Is the difference quotient

$$\frac{f(y_n) - f(c)}{y_n - c}$$

nonpositive or nonnegative for each $n \ge 1$?

b. What do each of the previous parts tell you about the sign of f'(c)? Write a short explanation for why the result of the theorem now follows. Come back and write a full proof when you finish the rest of the worksheet.

(a)
$$\Phi$$
 $f(x_n) \leq f(c) \quad \forall \quad n \geq 1$

$$\Rightarrow f(x_n) - f(c) \leq 0 \quad \forall \quad n \geq 1$$
and $x_n < c \quad \forall \quad n \geq 1$

$$\Rightarrow x_n - c < 0 \quad \forall \quad n \geq 1$$
Therefore $f(x_n) - f(c) \geq 0 \quad \forall \quad n \geq 1$

(a)
$$f(y_n) \le f(c) \quad \forall \quad n \ge 1$$

$$\Rightarrow f(y_n) - f(c) \le 0 \quad \forall \quad n \ge 1$$
and $y_n > c \quad \forall \quad n \ge 1$

$$\Rightarrow y_n - c > 0 \quad \forall \quad n \ge 1$$
Therefore $f(y_n) - f(c) \le 0 \quad \forall \quad n \ge 1$

Since f is differentiable at c,
$$\lim_{n\to\infty} \frac{f(x)-f(c)}{x-c}$$
 exists.

This implies $\exists L$ such that \forall sequences (x_n)

such that $\lim_{n\to\infty} x_n = c$ and $x_n \neq c$ \forall $n \geq 1$,

 $\lim_{n\to\infty} \frac{f(x_n)-f(c)}{x_n-c} = L$. By the discussion above, $L \leq 0$ and $L \geq 0$. Therefore $L = 0$. That is, $f'(c) = 0$.

Problem 2. The following questions outline a proof of Rolle's theorem. Assume that f is continuous on [a,b], differentiable on (a,b), and f(a)=f(b). Recall that the Extreme Value Theorem tells us that there exist x_0 and y_0 in [a,b] so that

$$f(y_0) \le f(x) \le f(x_0)$$

for all $x \in [a, b]$.

- a. Suppose at least one of x_0 or y_0 is in (a,b). Why does there exist $c\in(a,b)$ such that f'(c)=0.
- b. Suppose both x_0 and y_0 occur at the endpoints of [a,b]. Why does there exist $c\in(a,b)$ such that f'(c)=0.
 - The set (a,b), by the Interior Extremum Theorem, $f'(x_0) = 0. \quad \text{If} \quad y_0 \in (a,b), \quad f'(y_0) = 0 \quad \text{similarly}.$ In either case, $\exists c \in (a,b)$ such that f'(c) = 0
 - Suppose $x_0 = a$ and $y_0 = b$. Then $\forall z \in [a,b]$ $f(b) \leq f(x) \leq f(a) = f(b)$ Then f(x) is constant $\forall z \in [a,b]$ and f'(x) = 0 $\forall z \in [a,b].$ The same hold if $x_0 = b$, $y_0 = a$

or x0 = a, y0 = a or x0 = b, y0 = b.

Problem 3. We now attempt to prove the Mean Value Theorem.

- a. Let L(x) be the secant line that connects the points (a,f(a)) and (b,f(b)) on the graph of f. Give the value of L'(x) for all $x\in (a,b)$.
- b. Let g(x) = f(x) L(x). Explain why g satisfies the hypotheses of Rolle's Theorem.
- c. Use the previous parts and Rolle's Theorem to prove the Mean Value

- Since L(a) = f(a) and L(b) = f(b), g(a) = g(b) = 0. Since f and L are
 continuous on [a,b] and differentiable on (a,b), g is too.
- By Rolle's Theorem, $\exists c \in (a_1b)$ such that g'(c) = 0. Therefore, f'(c) L'(c) = 0, which implies $f'(c) = L'(c) = \frac{f(b) f(a)}{b c}$.