Math 301 — Basic inequalities

Problem 1. Let $a, b, c, d \in \mathbb{R}$. Give brief proofs for the following inequalities.

- a. $|a b| \le |a| + |b|$
- b. $|a+b+c| \le |a| + |b| + |c|$
- c. $|a-b| \le |a-c| + |c-d| + |d-b|$

Problem 2. Decide which of the following statements is true. Give a brief justification if the statement is valid and a counterexample if it is not.

- a. Two real numbers a, b satisfy a < b if and only if $a < b + \epsilon$ for every $\epsilon > 0$.
- b. Two real numbers a, b satisfy $a \le b$ if and only if $a < b + \epsilon$ for every $\epsilon > 0$.

Problem 3. Write the negation of the following statement and then make a guess about whether the statement itself or its negation is true.

There exists a real number x > 0 such that x < 1/n for all $n \in \mathbb{N}$.