Math 301 -Differentiability

Problem 1. Prove the quotient rule.
Problem 2. Use the difference quotient definition to prove that $f(x)=x$ is differentiable at any $a \in \mathbb{R}$ and $f^{\prime}(a)=1$.

Problem 3. Use the difference quotient definition to prove that $f(x)=x^{2}$ is differentiable at any $a \in \mathbb{R}$ and $f^{\prime}(a)=2 a$.

Problem 4. Let $n \in \mathbb{N}$ and let $f(x)=\left\{\begin{array}{ll}x^{n} & x>0 \\ 0 & x \leq 0\end{array}\right.$.
a. Let $n=1$.

1. Make a conjecture about whether f differentiable at all $a \in \mathbb{R}$.
2. Give a piecewise formula for $f^{\prime}(a)$ at all a where you think f is differentiable.
b. Let $n=2$.
3. Make a conjecture about whether f differentiable at all $a \in \mathbb{R}$.
4. Give a piecewise formula for $f^{\prime}(a)$ at all a where you think f is differentiable.
c. For which values of n do you think f is differentiable everywhere?
