Math 301 - The fundamental theorem of calculus

Problem 1. Let $f: I \rightarrow \mathbb{R}$ be a given function. Prove that if $F, G: I \rightarrow \mathbb{R}$ are antiderivatives of f then there exists $C \in \mathbb{R}$ such that $F(x)=G(x)+C$ for all $x \in I$.

Problem 2. Let $f: I \rightarrow \mathbb{R}$ be a continuous function and let $F: I \rightarrow \mathbb{R}$ be an antiderivative of f. Prove that for any $a, b \in I$

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
f(t)= \begin{cases}0 & t<0 \\ t & 0 \leq t \leq 1 \\ 4 & t>1\end{cases}
$$

a. Find a formula for $F(x)=\int_{0}^{x} f(t) d t$.
b. Make a sketch of the graph of F and make a conjecture of where F is continuous.
c. Make a conjecture of where F is differentiable and find $F^{\prime}(x)$ for all x where you believe F is differentiable.
d. In casual conversation, an analyst might say integration has a smoothing effect or integration increases regularity. What do they mean by this?

