Problem 1. Let $f_n : [0,1] \to \mathbb{R}$ be given by $f_n(x) = x^n$ for all $n \ge 1$. Find $f(x) = \lim_{n\to\infty} f_n(x)$ for each $x \in [0,1]$ and prove that $f_n \to f$ pointwise on [0,1]. Note: f(x) is not a continuous function even though $f_n(x)$ is for each $n \ge 1$.

Problem 2. Let $f_n : [0, \infty) \to \mathbb{R}$ be given by

$$f_n(x) = \frac{nx}{1+nx}$$

for all $n \ge 1$. Find $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in [0, \infty)$ and prove that $f_n \to f$ pointwise on $[0, \infty)$. Note: f(x) is not a continuous function even though $f_n(x)$ is for each $n \ge 1$.

Problem 3. Let $f_n : \mathbb{R} \to \mathbb{R}$ be given by $f_n(x) = \sin(nx)/n$ for each $n \ge 1$. Find $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in \mathbb{R}$ and prove that $f_n \to f$ uniformly on \mathbb{R} .

Problem 4. Let $f_n : \mathbb{R} \to \mathbb{R}$ be given by

$$f_n(x) = \frac{n}{(n+1)(1+x^2)}$$

for each $n \ge 1$. Find $f(x) = \lim_{n\to\infty} f_n(x)$ for each $x \in \mathbb{R}$ and prove that $f_n \to f$ uniformly on \mathbb{R} .