Math 301 - Pointwise and uniform convergence

Problem 1. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be given by $f_{n}(x)=x^{n}$ for all $n \geq 1$. Find $f(x)=$ $\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in[0,1]$ and prove that $f_{n} \rightarrow f$ pointwise on $[0,1]$. Note: $f(x)$ is not a continuous function even though $f_{n}(x)$ is for each $n \geq 1$.

Problem 2. Let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be given by

$$
f_{n}(x)=\frac{n x}{1+n x}
$$

for all $n \geq 1$. Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in[0, \infty)$ and prove that $f_{n} \rightarrow f$ pointwise on $[0, \infty)$. Note: $f(x)$ is not a continuous function even though $f_{n}(x)$ is for each $n \geq 1$.

Problem 3. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f_{n}(x)=\sin (n x) / n$ for each $n \geq 1$. Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in \mathbb{R}$ and prove that $f_{n} \rightarrow f$ uniformly on \mathbb{R}.

Problem 4. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f_{n}(x)=\frac{n}{(n+1)\left(1+x^{2}\right)}
$$

for each $n \geq 1$. Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in \mathbb{R}$ and prove that $f_{n} \rightarrow f$ uniformly on \mathbb{R}.

