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For each of the following examples of continuous time Markov chains (CTMC):
a. Draw a transition diagram showing the possible transitions that can occur between states.
Label the edges with transition rates.

b. Find the hold-time parameter for each state i.

c. Find the transition matrix P for the embedded chain.
Example 1. Consider two independ ‘hines that are d by a single person. Fach
machine functions for an exponentially distributed amount of time before breaking down with an
average time of 3 hours between breakdowns. The repair time for either machine is exponentially
distributed with an average repair time of 4 hours. Let X; denote the number of broken machines
at time ¢ in hours.
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Example 2. Suppose in the previous example that there are 2 maintenance people. The time it
takes either of them, working alone, to repair a machine is exponentially distributed with an average
Tepair time of 4 hours. Suppose that if only one machine is broken, one of them repairs it and the
other is idle. If two machines are broken, then they can work simultaneously, but ind {ently,
on each machine. Let X; denote the number of broken machines at time ¢ in hours.
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Example 3. Consider a population where members produce offspring but cannot die. Suppose
each member acts independently and takes an exponentially distributed amount of time, on average
6 months, to produce an offspring. Let X, be the population size at time ¢ in years and suppose
that Xy > 0.

Example 4. Like in the last example, consider a population where each member acts independently
and takes an exponentially distributed amount of time, on average 6 months, to produce an offspring.
Further, suppose that the lifespan of each member is exponentially distributed, with an average
lifespan of 4 years. is Let X; be the population size at time ¢ in years.
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