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6 Problem 1. Try the following exercises using the graph shown above.
/ . Find the transition matrix P.
. What do the following conditional probabilities mean in words? How many time units clapse?

5 Between which states do you transition? What does the notion of time-homaogeneity tell us

/ about parts b and c?
1L P(X,=3|Xp=1)
3

o

2. P(X7=5| X, =4)
3. P(X50=5|X40=2)
¢. Try computing the probability in part 1 above using the Conditional Law of Total Probability.
Wait until after doing Problem 2 before you think about the other probabilities.
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Problem 2. Let’s think more generally now. Suppose we’re working with a Markov chain whose
state space is S = {1,2,...,m}. Its transition matrix P is an m x m matrix and its ij-entry _ = , 2
is P,j = P(X; = j | Xo = 4). This is all given to us. Try using the Conditional Law of Total P ( X = J / X - ) = (F )
Probability to write an expression for 2= - 1 J (

Prove
P = | Xo =), ]
this )

called the 2-step transition probability, in terms of the entries of the transition matrix P. Your
expression should be a summation and its terms should be written using entries of the matrix P. Do - - -— N 3
you ize this as ing related to matrix algebra? If you figure these questions P ( X, =) } X._ =t ) = ( P ) ..
out, try thinking about P(X; = j | X, = i), called the 3-step transition probability. ? 2 ")




