Math 342, Spring 2024 - Homework 7

Tim Chumley

Due March 29 at 5:00 pm

Instructions. This problem set contains problems from Week 8 of class. The problem numbers refer to our textbook, Probability with Applications and R, by Amy Wagaman and Robert Dobrow, 2nd edition.

Problem 1. Do the following textbook problems and submit on Gradescope: 6.2, 6.6, 6.12, 6.16, 6.21, 6.22.

Problem 2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a given function where

$$
\operatorname{supp}(f)=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<2,0<y<2\right\}
$$

and define

$$
\begin{aligned}
& B_{1}=\left\{(x, y) \in \mathbb{R}^{2}: 0.5<x<1.5, y>1\right\} \\
& B_{2}=\left\{(x, y) \in \mathbb{R}^{2}: 2 x+y>2\right\} \\
& B_{3}=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2}\right\}
\end{aligned}
$$

a. Sketch the intersection of each set B_{i} with $\operatorname{supp}(f)$.
b. Set up each double integral $\iint_{B_{i}} f(x, y) d A$ in two ways: with $d A=d y d x$ and with $d A=d x d y$.

Problem 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a given joint probability density function where

$$
\operatorname{supp}(f)=\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0\right\}
$$

and define

$$
\begin{aligned}
& B_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x<y\right\} \\
& B_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x>3\right\} \\
& B_{3}=\left\{(x, y) \in \mathbb{R}^{2}: x+y<1\right\} .
\end{aligned}
$$

a. Sketch the intersection of each set B_{i} with $\operatorname{supp}(f)$.
b. Set up each double integral $\iint_{B_{i}} f(x, y) d A$ in two ways: with $d A=d y d x$ and with $d A=d x d y$.
c. Suppose $f(x, y)=c e^{-2 x} e^{-3 y}$ on its support set. Find the value of c.

Problem 4. If you liked the problems above or want more practice, our textbook has more great problems. The odd-numbered ones have solutions in the back. Here are some that I recommend (as optional, not to be turned in): $6.1,6.5,6.7,6.11,6.19,6.23$. Feel free to try others, including all the problems in the main sections, which include full explanations.

