Problem 1. Suppose that A, B, and C are events in an experiment, with C' and AU B mutually
exclusive and

P(AB®)=1/6, P(BA®)=1/4, P(AB)=1/12, P(C)=5/12 A g
Find the probability of each of the following: m
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b. at least one of A or B occurs <

c. exactly one of the three events occurs

d. all three events occur

e. at least one of the three events occurs
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Problem 2. A symphony orchestra has in its repertoire 30 Haydn pieces, 15 modern pieces, and
9 Beethoven pieces. A program consists of three different pieces from the repertoire. Suppose we
choose a program at random. Find the probability that the program has

a. two modern pieces
b. more than one piece of the same type

c. a Hayden piece first, followed by 2 modern pieces
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Problem 3. A bag of Scrabble tiles contains two of each of the letters R, A, N, D, O, and M for
a total of 12 tiles. Six tiles are picked without replacement and placed left to right on a Scrabble
rack. Find the probability that you:

. spell R-A-N-D-O-M from left to right
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. pick both R’s
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. pick no M’s

@ e xie

Problem 4. Every Saturday afternoon Carmen plays golf with probability 0.3 or plays squash with
probability 0.7. After the golf game, she goes out for a massage with probability 0.55, and after
the squash game, she goes out for a massage with probability 0.2.

a. Find the probability that she will go out for a massage.

b. If she goes out for a massage, what is the probability that she played golf?
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Problem 5. There are three coins in a box. One is two-headed, one is fair, and one is biased to
come up heads with probability 0.75. A coin is selected at random, flipped, and shows heads. What
is the probability that it was the two-headed coin?
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Problem 6. Suppose A, B,C are independent events with respective probabilities 1/6, 1/4, and
1/2. Find the probability that

a. at least one of the events occurs
b. A does not oceur, given that both B and C' occur

c. A and B occur, given that A or B occur
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Problem 7. A coin has heads probability 1/3.
a. Find the probability that among 7 tosses of the coin

1. no heads appear
2. exactly 3 heads appear
3. at least 5 heads appear

b. Suppose 5 people each make 7 tosses of the coin. Find the probability that at least 3 of them
get no heads.
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Problem 8. For the following situations determine whether the binomial distribution is a reason-
able model for the given random variable. If so, state its parameters. If not, explain why.

a. Grant believes there is a 40 percent chance of rain tomorrow. Let X indicate the presence or
absence of rain tomorrow.

b. Dana and Curtis are playing a strategy game. They are equally likely to win, and play 10
matches. Let X denote the number of Dana’s wins out of those matches.
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. Eddie spends his free afternoons watching ship traffic in the harbor. Each hour about 4 large

ships arrive to dock at the port. Let X be the number of large ships which arrive in the next
hour.

Marilyn is playing a board game where income per turn is generated by rolling a standard
six-sided dic and multiplying the result by 100. Let X be the income carned on a turn.
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Problem 9. Let X; ~ Ber(0.2) andX, ~ Ber(0.7) be independent random variables. Find the

probability mass function of ¥ = X; + X,. What is the probability mass function of ¥ if X; and
X, have the same parameter p?
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