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Problem 1. A gambler’s dispute in 1654 is to have led to the creation of the European school of
mathematical probability. Two French mathematicians, Pascal and Fermat, considered the prob-
ability that, in 24 throws of a pair of dice, at least one “double six” occurs. It was commonly
believed by gamblers at the time that betting on double sixes in 24 throws of a pair of dice would
be a profitable bet (ie. greater than 50% probability), but Pascal and Fermat showed otherwise.
Find the probability.
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Problem 2. A manufacturing process produces el i that are i defec-
tive. There is a i I 1 chance that an individual is defective, and whether or
not a is defective is ind. dent of any other ’s status. Find the probability

that among 500 components, at least one is defective.
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Problem 3. Suppose X is a random variable that takes values on all positive integers. That is,

its range is all positive integers. Let A = {2 < X <4} and B = {X >4}. Describe the events
A°,B°, AB,AUB.
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Problem 4. In Julia’s garden, there is a 3% chance that a tomato will be bad, with each tomato
independent from the others. Julia harvests 100 tomatoes. Let X be the number of bad tomatoes
harvested.

a. Find the range of X.

b. Express the event of getting no bad tomatoes in terms of X and find its probability.

c. Express the event of getting at most five bad tomatoes in terms of X and find its probability.
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