Math 342 — Variance and linearity of expectation

Problem 1. Suppose we play a game, which costs \$10 to play, based on the experiment of rolling a die. If our roll is 3 or less, we lose our entry fee. If our rolls is 4, we get our entry fee back. If we roll a 5 or 6, we get our entry fee back along with \$12. Find the expected value, variance, and standard deviation of our net winnings.

Problem 2. Suppose $E[X] = a, E[Y] = b, E[X^2] = c$, and $E[Y^2] = d$. Express the following in terms of a, b, c, d.

- a. E[3X 4Y]
- b. $E[X^2 7Y^2 + 3X]$
- c. V(-4X+1)
- d. V(2X 3Y + 4), assuming X and Y are independent

Problem 3. The following small algebra exercises lead up to proving the formula V(X + Y) = V(X) + V(Y) when X and Y are independent.

- a. Express $E\left[(X+Y)^2\right]$ as a sum of three expectations.
- b. Let $\mu_X = E[X]$ and $\mu_Y = E[Y]$. Express $(\mu_X + \mu_Y)^2$ as a sum of three terms involving μ_X and μ_Y .
- c. Show that when X and Y are independent, V(X + Y) = V(X) + V(Y).