Math 342 — Probability density functions

Problem 1. Consider the piecewise defined function $f : \mathbb{R} \to \mathbb{R}$ given by.

$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Its plot is given here:

Compute each of the following using just the elementary fact that the area of a rectangle is bh where b denotes the length of the base and h denotes the length of the height.

a. $\int_{0}^{1/4} f(t) dt$

b.
$$\int_0^{1/2} f(t) dt$$

c.
$$\int_0^{2/3} f(t) dt$$

- d. $\int_{1/3}^{2/3} f(t) dt$
- e. $\int_2^3 f(t) dt$
- f. $\int_{1/2}^{2} f(t) dt$
- g. $\int_{-\infty}^{0} f(t) dt$
- h. $\int_{-\infty}^{1} f(t) dt$
- i. $\int_{-\infty}^{\infty} f(t) dt$
- j. $\int_0^x f(t) \, dt$ if 0 < x < 1 (your answer will be in terms of x)
- k. $\int_0^x f(t) dt$ if $x \ge 1$
- 1. $\int_0^x f(t) dt \text{ if } x \le 0$

Problem 2. Let X be a random variable with density f given by

$$f(x) = \begin{cases} cx^2 & -2 \le x \le 2\\ 0 & \text{otherwise.} \end{cases}$$

- a. What value of c makes it so that $\int_{-\infty}^{\infty} f(t) dt = 1$?
- b. For each of the following definite integrals, draw a plot of f(x), shade in the area represented by the integral, and then compute a value for the integral/area.
 - 1. $\int_{-\infty}^{1} f(t) dt$ 2. $\int_{1}^{\infty} f(t) dt$ (can you use your answer to the previous integral when computing this?) 3. $\int_{-1}^{2} f(t) dt$
- c. What probabilities do the previous integrals represent?

Problem 3. Let X be a random variable with density f given by

$$f(x) = \begin{cases} 1 - x & 0 \le x < 1\\ cx^2 & 1 < x < 2\\ 0 & \text{otherwise.} \end{cases}$$

- a. What value of c makes it so that $\int_{-\infty}^{\infty} f(t) dt = 1$?
- b. For each of the following definite integrals, draw a plot of f(x), shade in the area represented by the integral, and then compute a value for the integral/area.
 - 1. $\int_{-\infty}^{1} f(t) dt$
 - 2. $\int_{1}^{\infty} f(t) dt$ (can you use your answer to the previous integral when computing this?) 3. $\int_{1/2}^{3/2} f(t) dt$
- c. What probabilities do the previous integrals represent?

Problem 4. Let X be a random variable whose density is given by

$$f(x) = \begin{cases} ce^{-2x} & x \ge 0\\ 0 & x < 0. \end{cases}$$

The plot of f is given here:

- a. Find c so that $\int_{-\infty}^{\infty} f(t) dt = 1$
- b. Compute:
 - 1. P(X < 1)
 - 2. P(X = 1)
 - 3. P(1 < X < 2)
 - 4. P(X > 2)
 - 5. $P(X \le x)$ for an arbitrary positive number x
 - 6. $P(X \le x)$ for an arbitrary negative number x