Math 342 - Cumulative distribution functions

Problem 1. Suppose X is a continuous random variable with density

$$
f(x)= \begin{cases}c & -4 \leq x \leq 7 \\ 0 & \text { otherwise }\end{cases}
$$

a. Draw the graph of f and find c.
b. Find an expression for $F(x)=P(X \leq x)$ in terms of x when

1. $x<-4$
2. $-4 \leq x \leq 7$
3. $x>7$
c. Use $F(x)$ to find the following probabilities. Do not do any integration.
4. $P(-3<X<1)$
5. $P(X \geq 1.5)$
6. $P(-5 \leq X \leq 5)$

Problem 2. Consider the continuous random variable X whose density is given by

$$
f(x)= \begin{cases}c x^{2} & -1<x \leq 0 \\ x & 0<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

a. Draw the graph of f and find c.
b. Find an expression for $F(x)=P(X \leq x)$ in terms of x when

1. $x \leq-1$
2. $-1<x \leq 0$
3. $0<x \leq 1$
4. $x>1$
c. Use $F(x)$ to find the following probabilities. Do not do any integration.
5. $P(-0.25 \leq X \leq 0.75)$
6. $P(X \leq-0.5)$
7. $P(X>0.5)$

Problem 3. Suppose X is a continuous random variable with cdf given by

$$
F(x)=P(X \leq x)= \begin{cases}0 & x \leq 0 \\ \frac{x^{4}}{16} & 0<x<2 \\ 1 & x \geq 2\end{cases}
$$

a. Draw a plot of $F(x)$.
b. Find $f(x)$ and draw a plot on a separate set of axes.
c. How is the area under f related to F ?
d. Use $F(x)$ to find the following probabilities. Do not do any integration.

1. $P(X>1)$
2. $P(1 \leq X \leq 2)$
3. $P(1 / 2<X<10)$
