Math 342 -Double integrals

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a given function where

$$
\operatorname{supp}(f)=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1,0<y<1\right\},
$$

and consider the following given sets:

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbb{R}^{2}: x<y\right\} \\
& B=\left\{(x, y) \in \mathbb{R}^{2}: x+y<1\right\} \\
& C=\left\{(x, y) \in \mathbb{R}^{2}: y>1 / 4\right\} \\
& D=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{3}\right\} \\
& E=\left\{(x, y) \in \mathbb{R}^{2}: y>x / 2\right\} .
\end{aligned}
$$

Problem 1. For each set:
a. Sketch its intersection with $\operatorname{supp}(f)$ on the $x y$-plane.
b. Set up a double integral that gives the volume under f and above the set in two ways: with $d A=d y d x$ and with $d A=d x d y$.
Problem 2. Suppose $f(x, y)=c x y$ on its support.
a. Find the value of c so that the total volume under f is 1 .
b. Compute $\iint_{E} f(x, y) d A$ where E is the set given above.

