Math 342 -Marginals and independence

Problem 1. Let X and Y have joint density given by

$$
f(x, y)= \begin{cases}6(x-y) & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

a. Find the marginal density of X. Make sure to give a piecewise definition.
b. Find the marginal density of Y. Make sure to give a piecewise definition.
c. Are X and Y independent?

Problem 2. Answer the questions of Problem 1 using the joint density

$$
f(x, y)= \begin{cases}2 e^{-(x+y)} & 0<x<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Problem 3. Suppose Xavier and Yolanda are planning to meet at a coffee shop for lunch. Xavier will arrive at some time uniformly distributed between 1:00 and 1:30 p.m, and Yolanda will arive at some time uniformly distributed between 1:00 and 1:20. Their arrival times are independent.
a. What is the probability that Xavier arrives at least 10 minutes after Yolanda?
b. What is the probability that they arrive within 5 minutes of each other?

