Math 342 -MGFs and Sums of Normal random variables

Problem 1. Let $X \sim N\left(\mu, \sigma^{2}\right)$. Use the moment generating function of $Z \sim N(0,1)$ to find the moment generating function of X. Hint: remember that $Z=(X-\mu) / \sigma$.
Problem 2. Let $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ be independent normal random variables.
a. Find the moment generating function of $X+Y$.
b. Explain why $X+Y$ is normally distributed and give its mean and variance.

Problem 3. Let $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ be i.i.d. normal random variables. Let $S_{n}=X_{1}+\cdots+X_{n}$. Explain why S_{n} / n is normally distributed and give its mean and variance.

Problem 4. Before paying at a fruit stand, your fruit is weighed on a scale that is a bit unreliable. The weight output by the scale is a random variable $X=w+M$ where w is the true weight of your fruit and $M \sim N(0,4)$ is the measurement error (in ounces).
a. If you weight your fruit, what is the probability that the weight output by the scale is within 1 ounce of the true weight w ?
b. Suppose you weigh your fruit 5 times and take the average of the resulting weights. What is the probability that the average is within 1 ounce of the true weight w ?

