Math 342 -Exam 2 review

Your exam in class on April 5 will contain about 5 multi-part problems. It will cover material from Homework 5 to Homework 7, but it will not include any material from the multivariable integration review or the continuous joint distributions. In the textbook, this is material spanning sections 4.3 through 6.5 , though we've skipped some material in that range which will not be part of the exam. There will be no material related to R or Monte Carlo simulation on the exam. The problems below give you a sampling of some problems like those that will appear on the exam, but it's not necessarily comprehensive, so make sure to review old homework, quizzes, worksheets, and lecture notes. There are also suggested exercises that have been given as part of each homework, most of which have answers at the back of the textbook. No notes will be allowed on the exam, but there will be some formulas given on the exam sheet. You'll be allowed to use a scientific calculator with no graphing or calculus functionality, but the problems will be written so that a calculator is not required.

Problem 1. Let X be a random variable with density given by

$$
f(x)= \begin{cases}c\left(1-x^{2}\right) & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

a. Find c
b. Find the CDF of X.
c. Find $P(-.5 \leq X<0.5)$.
d. Find $E[X]$ and $V(X)$.

Problem 2. Suppose that X is a random variable with CDF given by

$$
F(x)= \begin{cases}1-\frac{1}{x^{2}} & x>1 \\ 0 & \text { otherwise }\end{cases}
$$

a. Find the median of X.
b. Find $P(X \geq 1.5)$
c. Find $P(3 \leq X \leq 4)$
d. Find the density of X.

Problem 3. Someone receives on average 5 text messages per hour. Let X denote the time until they receive a message.
a. What distribution should be used to model X ? What parameter(s) does it have?
b. Find the expected time until receiving a message.
c. Find the probability that it takes between 10 and 20 minutes before receiving a message.
d. Find the probability that it takes less 30 minutes to receive a message.
e. Suppose no message has been received after 30 minutes. Find the probability that still no message has been received after 5 more minutes.

Problem 4. Suppose you are working at a blood bank where people donate blood. Type O blood is one of the best to be donated since it can be used for many people. Approximately 42% of people have type O blood.
a. Find the probability that it takes exactly 15 patients until you've gotten 1 with type O blood.
b. Find the probability that it takes exactly 15 patients until you've gotten 3 with type O blood.
c. On average how many patients have to come in until you've gotten 3 with type O blood?

Problem 5. For the following situations describe the distribution, including parameters, of the given random variables. Give the most reasonable distribution for the situation.
a. Every day there is a 10% chance that Rick will receive no mail. Let X be the number of times he receives mail over the next 5 days.
b. Shawna is playing craps at the casino. The probability of winning craps is about 0.49 . She will keep playing until she wins. Let X be the number of times she will play.
c. Of 100 raffle tickets available, 30 are marked for a prize by the presence of a blue dot. Courtney picks up 10 raffle tickets at random for her co-workers. Let X be the number of raffle tickets Courtney has that are marked for a prize.
d. Rainer is listening to a music station which he isn't used to, and finds that he recognizes about 30% of the songs that they play. He plans to keep listening to songs until he hears 4 songs that he knows. Let X be the number of total songs that Rainer has to listen to in order to hear 4 songs that he knows.

Problem 6. Faith is handing out treats to her cat, Mysteria. She has been randomly generating X, the number of treats using a binomial distribution with $n=3$ and $p=0.4$. Malcolm says that it's unfair that Mysteria might get 0 treats, so he suggests 0 be ruled out as an option, and those values all turned into 1's, so that the cat always gets at least one treat. Denote Malcolm's new random variable for the number of treats by U.
a. Find the moment generating function of U.
b. Use the moment generating function of U to compute $E[U]$.

Problem 7. Let X be the value of the first die and Y the sum of the values when two dice are rolled. Compute the moment generating functions of X and Y.

Problem 8. A bag contains 3 red, 5 green, and 7 blue balls. A sample of 2 balls is drawn with replacement. Let X be the number of red balls in the sample and let Y be the number of green balls in the sample.
a. Find the joint probability mass function of X and Y.
b. Find $P(X>Y)$.
c. Find the marginal distributions of X and Y.
d. Find $E[X+Y]$.

Problem 9. Let

$$
\begin{aligned}
& E[X]=5, E\left[X^{2}\right]=27.5, E\left[X^{3}\right]=162.5, E\left[X^{4}\right]=1017.5 \\
& E[Y]=6, E\left[Y^{2}\right]=39.6, E\left[Y^{3}\right]=281.52, E\left[Y^{4}\right]=2128.176
\end{aligned}
$$

Suppose X and Y are independent. Find the following quantities.
a. $V\left(X-Y^{2}\right)$
b. $E\left[X^{2} Y^{3}\right]$
c. $V\left(X^{2} Y^{2}\right)$

