Math 342 -Conditional densities

Problem 1. Let X and Y have joint density

$$
f(x, y)= \begin{cases}4 e^{-2 x} & 0<y<x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

a. Make a sketch of $\operatorname{supp}(f)$.
b. Find the marginal density of X.
c. Write an expression for $f_{Y \mid X}(y \mid x)$.
d. Write an expression for $f_{Y \mid X}(y \mid 5)$.
e. Find $P(Y>1 \mid X=5)$ by computing an integral.

Problem 2. Suppose you are given the conditional density $f_{Y \mid X}(y \mid x)$ and marginal densities $f_{X}(x)$ and $f_{Y}(y)$. Try to derive a formula for the conditional density $f_{X \mid Y}(x \mid y)$ in terms of these three given densities. What do you think this formula should be called?

Problem 3. Suppose Alice picks a random number X uniformly distributed in the interval $(0,10)$. Then if Alice's number is $X=x$, Bob picks a number Y uniformly distributed in the interval $(0, x)$. This is sometimes called a hierarchical model.
a. Suppose we know Alice picked the number 6. Find the probability that Bob's number is greater than 4 by first doing the following.

1. State the marginal density $f_{X}(x)$ of X.
2. State the conditional density $f_{Y \mid X}(y \mid x)$ of Y given $X=x$. Note no calculation is necessary.
b. Suppose we only saw the second step of the experiment. That is, we saw that Bob picked 1. The find the probability that Alice's number is greater than 9 by first doing the following.
3. State the joint density of X and Y. Note no calculation is necessary.
4. Find the marginal density $f_{Y}(y)$ of Y.
5. Use your answer to Problem 2 to state the conditional density $f_{X \mid Y}(x \mid 1)$ of X given $Y=1$.
