Math 342 — Conditional expectation

Problem 1. Consider the random variables X and Y with joint density

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Find the conditional expectation E[X | Y = y] through the following steps.

- a. Find the marginal density $f_Y(y)$ of Y.
- b. Find the conditional density $f_{X|Y}(x \mid y)$, making sure to take note of the interval of values of x for which the conditional density is non-zero. This interval will depend on y.
- c. Compute $E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) dx$. Note it's possible to avoid doing any computation in this step by thinking intuitively about your answer to the previous part.

Problem 2. Repeat similar steps as the previous problem to compute E[Y | X = x].

Problem 3. Suppose $X \sim \text{Unif}(\{1/2, 1/3, 1/4\})$ represents the unknown heads probability of a coin. Let Y be the number of heads that result in tossing this coin 5 times.

- a. Give the conditional probability mass function of Y given X = x.
- b. Find $E[Y \mid X = 1/2], E[Y \mid X = 1/3], E[Y \mid X = 1/4]$. Note that this can be done with a minimal amount of computation.
- c. State a general formula for $E[Y \mid X = x]$.
- d. Make a conjecture for how to compute E[Y] and give its value based on your conjecture.

Problem 4. Suppose Alice picks a random number X uniformly distributed in the interval (0, 10). Then if Alice's number is X = x, Bob picks a number Y uniformly distributed in the interval (0, x).

- a. Give the conditional density of Y given X = x.
- b. Find a general formula for E[Y | X = x]. Note that this can be done with a minimal amount of computation.
- c. Make a conjecture for how to compute E[Y] and give its value based on your conjecture.