
Introduction to Monte Carlo simulation

Introduction to R
R is a programming language. There are often multiple ways to accomplish a given task, so you may see
different code here than in the textbook. The textbook code is a good reference, but during the semester,
don’t forget your class notes and examples too!

Note that R is case-sensitive. That means capitalization and spelling count! The # in a line of code is a
commenting convention. R ignores anything after the # as a comment, but it will still show up in the line of
code.

There will be R problems in homework, plus occasionally regular textbook homework problems will require
some R calculations (instead of using a calculator or tedious calculation).

Basic built-in functions

x <- c(3,5,6,8) # creates a vector with 4 entries `c` stands for concatenate
print(x)

[1] 3 5 6 8

sum(x) # adds up the entries in x

[1] 22

sum(x)/length(x) # finds the average by summing and dividing by the number of entries

[1] 5.5

mean(x) # finds the average value (just like the previous line of code)

[1] 5.5

x == 6 # == means "is"

[1] FALSE FALSE TRUE FALSE

Functions useful for simulation
One of the primary reasons we will be using R and RStudio is to run simulations that illustrate and reinforce
probability concepts. Later, it will also be useful for working with probability distributions.

The sample command

Suppose we want to generate a random number between 0 and 10 (integers only). There are many ways to
do this, but we’ll start with learning the sample command.
0:5

[1] 0 1 2 3 4 5

sample(0:5, size = 1)

[1] 3

1

Question How would you adjust the sample command to get 3 random values instead of one? What is the
meaning of the replace option?
write code here

Rolling a die To simulate rolling a standard 6-sided die:
sample(1:6, size = 1) # roll once

[1] 2

sample(1:6, size = 2, replace = TRUE) # roll twice

[1] 3 3

sum(sample(1:6, 2, replace = TRUE)) # roll twice and sum the results

[1] 8

Tossing a coin To simulate tossing 20 fair coins:
sample(0:1, size = 20, replace = TRUE) # 1 corresponds to heads, 0 to tails

[1] 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1

To simulate tossing 20 fair coins and counting the number of heads:
sum(sample(0:1, size = 20, replace = TRUE))

[1] 9

The replicate function

The replicate function lets you repeat a command a fixed number of times.
replicate(5, print("Hello"))

[1] "Hello"
[1] "Hello"
[1] "Hello"
[1] "Hello"
[1] "Hello"

[1] "Hello" "Hello" "Hello" "Hello" "Hello"

Question Write some code to repeat the experiment the following experiment 100 times: toss a coin 20
times and count the number of heads.
write code here

Defining a function (to make an indicator variable)

When doing Monte Carlo simulation, we want to be able to simulate an experiment and check whether our
desired event A occurred. It’s useful to make a function that outputs 1 when a trial of our experiment results
in event A occurring, and 0 when it does not.

The following function runs one trial of the experiment where we toss a coin 6 times and checks whether we
got 3 heads.
trial.simulation = function() {

this function is like our X_k random variables

2

x = sum(sample(0:1, size = 6, replace = TRUE))
if (x == 3)

return(1)
else

return(0)
}
when we get 3 heads in 6 tosses, this function returns 1;
otherwise it returns 0

Doing Monte Carlo simulation

Once we’ve written our trial.simulation function, to do Monte Carlo simulation we simply need to repeat
our experiment a large number of times and average the results.
mean(replicate(n = 1e6, trial.simulation()))

[1] 0.312046

Question How does this compare with the exact value (found using counting)?

Setting Seeds

Let’s generate two more random numbers - just from 1 to 10, using separate commands.
sample(1:10, 1)

[1] 7

sample(1:10, 1)

[1] 5

You likely got different results. Generating random numbers is great except that we like to be able to
reproduce our work. If we each use a sample command, we aren’t assured of getting the same random
number, unless we set the same seed for the random number generator. If you run the next code chunk (all
of it), your randomly generated value should be the same always.
set.seed(1)
sample(1:10, 1, replace = TRUE)

[1] 9

set.seed(1)
sample(1:10, 1, replace = TRUE)

[1] 9

It may sound odd to be able to generate the same random numbers every time, but this is a way to make
your work reproducible. You won’t always need to set a seed, but if you find you are getting unexplainable
results, and want to ask for help, try comparing with a friend who has set the same seed.

Getting help
What if you don’t know what a command does, and there is no instruction about it? Help for R functions can
be accessed by typing ?functionname at the console. For example, if I wanted help for the sample function,
I would type ?sample in the console.

3

Exercises
Problem 1
Let’s write code for a Monte Carlo simulation that estimates the probability of getting exactly 1 four in 5
rolls of a die?

Question What is the exact probability (found using counting)? This will help us check whether our
simulation is correct.

Monte Carlo simulation

Write a trial simulation function and then use the replicate and mean functions to get an approximation of
the desired probability. Try doing 100,000 trials of the simulation. Compare with the exact probability you
found.
write code here

Problem 2
Suppose we roll a pair of dice and sum the results. What is the probability of getting a sum of at least 9?
Write a Monte Carlo simulation to verify your answer.
write code here

4

	Introduction to R
	Basic built-in functions
	Functions useful for simulation
	The sample command
	The replicate function
	Defining a function (to make an indicator variable)
	Doing Monte Carlo simulation
	Setting Seeds

	Getting help
	Exercises
	Problem 1
	Monte Carlo simulation

	Problem 2

