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Background

@ We will focus on the flow-kick system, which is a modification of the
differential-equations model that introduces kicks at predetermined
times.

@ Known: the behavior of the system in the context of immune system
modeling with deterministic kick magnitudes and times.

@ Goal: explore the behavior of flow-kick systems when kick magnitudes
and times are random and chosen according to probability
distributions.
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Main Questions

@ Add randomness: What happens when the exposure size and timing
vary?

@ Uniform sampling vs. Exponential sampling: What happens when we
use different probabilistic sampling methods?

© How does the value of A (the average number of kicks within a
certain time interval) influence the reinfection rate?
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Influenza model: innate immunity and adaptive immunity
@ The virus(V), target cells(T), and infected cells(l) make up a

subsystem where the virus infects the target cells to produce more
infected cells and more virus.

o The interferon(F) represents the innate immune function and kills
infected cells, while the adaptive immunity includes B-cells(B) that
produce antibodies(A) that neutralize the virus.

Target cells (T)
(host organism)

Cell death
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System of Differential Equations

7 = pf — ¢V — — TV
V=pl—cV - uVA-pVT

T=gT(1—%)—ﬁ'VT L4

VoV
F_ b V _ _
I=pVT 5 -6 —«IF
F=gI-dF
B=mV(l-B)-mB
A=mB-rA-u'VA

Figure: differential equations

Cathy Liu Immuno-epidemiological Model for Transient

Par  Description value units.
p  viral production rate 035 uy [(urd)
c viral clearance rate 20 1/d
m rate of viral loss per unit of antibodies 0.2 1/(usd)
' rate of antibody loss per virion 0.04 1/(uyd)
p  rate of viral loss per target cell 5x107  1/(upd)
p'  rate of conversion from target cells to in- 2x10~5  1/(uyd)
fected cells per virion
V,, half-activation for viral growth 10 uy
g basal growth rate of healthy target cells 0.8 1/d
C, maximum cell capacity of the target tis- 7 x 107 urp
sue
&  death/removal rate of infected cells 3 1/d
x  killing rate of infected cells per unit of 3 1/(upd)
interferon
q interferon production rate 1x1077  ugp/(upd)
d interferon degradation rate 2 1/d
my  rate of B-cell activation per virion 1107 1/(uyd)
m,  rate of B-cell deactivation 0.01 1/d
my  antibody production rate from B-cells 12000 uy/d
r antibody degradation rate 0.2 1/d
k kick size representing viral exposure order 10* uy

Figure: parameters
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Six-plots with Initial Condition

@ Initial Condition:
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7 ~ Unif(7,8)

@ k represents re-exposure dose magnitude: 12000 < k < 13000
@ T represents inter-exposure interval, i.e. time between kicks: 7 <7< 8

@ Out of 500 simulations, 386 (77)%) of the simulations had an
excursion when t=600.
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Figure: stochastic simulation (Alanna)

Figure: T vs. k
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7 ~ Unif(7,8)

Add randomness: - B
IC = [15000; 7x10~7; 0; 0; 0; 0];
k_V = 0;
k=1[kVeoooool;
tau = 7+1kxrand(85,1);
steps = find(cumsum(tau) >= 600,1)-1;
tau = tau(l:steps);
a=0;

e a=0 b = 1000;
tall = [1;
_ Yall = [1;
e b=1000 kall = [1;
@ k=[12000+ (a4 (b—a)*rand]  tor c = 1:steps
[ts, Ys] = ode45(f,[0,tau(c)], IC);
e T=7+1xrand(85,1) k = [12000 + (a+(b-a)xrand), @, 0, 0, 0, 0l;

IC = Ys(end,:) + k;

tall = [tall; ts+sum(tau(1l:(c-1)))]1;
Yall = [Yall; Ysl;

kall = [kall; k(1)1;
%sexcursioncheck(tall, Yall);
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7 ~ Unif(7,8)

Strong law of large numbers: Let Xi,X5,... be an i.i.d sequence of

random variables with finite mean u, X; ~ Ber(p). Let Sp, = X1 +---+ X,.
Then as n — o,

P(Iim&:u)zl,

n—o0 N

which implies that

X1+ ...+ X,
m

lim 227 EIX] = p=
n—oo n [] p ‘LL
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7 ~ Unif(7,8)
The Central Limit Theorem: Let X1, X5,... be an i.i.d sequence of

random variables with finite mean p and variance 62. For n=1,2,..., let
S, =X{+---+X,. Then as n — oo,
Sp/n—u
——F ~4(0,1
o/\/n @1
S, o
N~ 1
Zo (),
S c

S 2

n o]
o A 7),
which implies that as n — oo,
Sn o2
p=-—" A 7)-
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7 ~ Unif(7,8)

Excursion Check Function

@ Excursion: in the positions minimum time to the end, check if
Ys > 2.5 x10°.

@ Outputs: excursion result (0's and 1's), excursion time (quantitative)

@ mean time to excursion = mean(excursion time)

@ probability of excursion = mean(excursion result)

if max(Ys(minimum_time:end,1)) >= 2.5%10"5
smax of virsus in positions minimum_time to end, checking if that is >=2%10"5
%display('excursion')
index_of_excursion = find(Ys(minimum_time:end,1) >= 2.5%10"5,1)+minimum_time;
Ys(index_of_excursion,1);
ts(index_of_excursion);

output = 1;

output2 = ts(index_of_excursion);
else

output = 0;

output2 = NaN;
%display ('no excursion')
end
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7 ~ Unif(7,8)
Probability of excursion
e n=10000

@ Probability of excursion ~ 0.7090

@ Mean time to excursion ~ 408.7978
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Figure: probability of excursion vs.

number of trails Figure: histogram of time to excursion
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7 ~ Unif(7,8)
Construct Confidence Interval
@ According to the Central Limit Theorem,

S, o2
pP=— NC/V(,”)T)a

n
we construct the Confidence Interval,

Cl=[y+ in « 1.96], where & = 0.4542, 2000 < n < 10000
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N ~ Pois(1), T ~ Exp(gs5)

@ k represents re-exposure dose magnitude: 12000 < k < 13000.
@ N represents the number of kicks over time interval [0,600]:
N ~ Pois(A), i.e. N~ Pois(éi%o).
@ U represents the exact times when kicks happen: U ~ Unif(0,600)
@ T represents time between kicks: 1, = U, — U,_1.

T~ Exp(ghs), E[1] =0, ie. T ~Exp(}), E[r] =7.

N = poissrnd(lambda);

U = 60@xrand(N,1);

sorted_U = [@; sort(U); 660];
tau = [diff(sorted_U)];

steps = find(sorted_U >= 600,1)-1; number_of_lambda = 0:31;
tau = tau(l:steps); lambda = 600./(7+number_of_lambda*3);
a=0;
b = 1000; %for more than one lambda, need to use the code below
tall = [1; prob_excursion = zeros(length(number_of_lambda),number_of_trials);
Yall = []; results = zeros(length(number_of_lambda),number_of_trials);
[kall = []; for j = 1:length(lambda)
if N>0 parfor k = 1:number_of_trials
for ¢ = listeps [excursion_result(k), excursion_time(k)] = trial(lambda(j));
[ts, Ys] = ode45(f,[0,tau(c)], IC); end

k = [12000 + (a+(b-a)xrand), @, 0, 0, 0, 0];
IC = Ys(end,:) + k;
tall = [tall; ts+sum(tau(1:(c-1)))]1;

vall = (vall; val; Figure: for loop of lambdas

kall = [kall; k(1)];

Figure: exponentially sampling 7
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N ~ Pois(1), T ~ Exp(gs5)

Probability of excursion

A represents the average number of kicks in 600 days. A =6
n=10000
[.L = mean(excursion result) ~ 0.9570
= std(excursion result) ~ 0.2029
CI = [yj: x 1.96], where o =0.2029, 2000 < n < 10000
Tt b 4, QG
o l ! f

Figure: probability of excursion with

Figure: probability of excursion
errorbar
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N ~ Pois(1), T ~ Exp(gs5)

How does A influence time to excursion

A represents the average number of kicks in 600 days.

890 represents the average time between kicks. E[7] = 92

As A increases, time to excursion is more likely to have Gaussian
distribution.

Also, as A increases, the mean time to excursion decreases.
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Figure: histogram of time to excursion  Figyre: mean time to excursion vs.
corresponding to different lambdas lambda
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N ~ Pois(1), T ~ Exp(gs5)
How does A and 7 influence the mean time to excursion
@ A represents the average number of kicks in 600 days.
o 7 (i.e. °%9) represents the average time between kicks. E[t] = 2.
@ 32 points, each one corresponds to a specific A.
@ As A increases, the mean time to excursion decreases.

@ As 7 increases, the mean time to excursion increases.

mean time to excursion vs. lambda
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: A
N ~ Pois(1), T ~ Exp(g55)
How does A and 7 influence the probability of excursion
@ A represents the average number of kicks in 600 days.

probability of excursion
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T (i.e. %) represents the average time between kicks. E[7] =
As A increases, the probability of excursion increases and approaches

to 1.

As T increases, the probability of excursion decreases.
By constructing the errorbar, we conclude it has a potential to be a

smooth curve.

probability of excursion vs. lambda

300 400
average number of kicks in 600 days

probability of excursion

g

098

600

7

probability of excursion vs. tau
==

\
\
\

W1

10

20

EY

50 60 70
average time between kicks (days)

80

Spring 2022

o 100



Future Direction for Further Exploration

e Bifurcation analysis
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Thanks for listening!
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