Immuno-epidemiological Model for Transient Immune Protection

Cathy Liu

May 3, 2022

Cathy Liu

Immuno-epidemiological Model for Transient

Spring 2022

Background

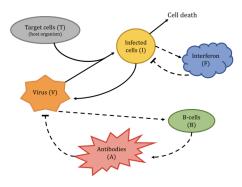
- We will focus on the flow-kick system, which is a modification of the differential-equations model that introduces kicks at predetermined times.
- Known: the behavior of the system in the context of immune system modeling with **deterministic** kick magnitudes and times.
- Goal: explore the behavior of flow-kick systems when kick magnitudes and times are random and chosen according to probability distributions.

Main Questions

- Add randomness: What happens when the exposure size and timing vary?
- Oniform sampling vs. Exponential sampling: What happens when we use different probabilistic sampling methods?
- How does the value of λ (the average number of kicks within a certain time interval) influence the reinfection rate?

Influenza model: innate immunity and adaptive immunity

- The virus(V), target cells(T), and infected cells(I) make up a subsystem where the virus infects the target cells to produce more infected cells and more virus.
- The interferon(F) represents the innate immune function and kills infected cells, while the adaptive immunity includes B-cells(B) that produce antibodies(A) that neutralize the virus.



System of Differential Equations

$$\dot{V} = pI - cV - \mu VA - \beta VT \frac{V}{V_m + V}$$
$$\dot{T} = gT \left(1 - \frac{T + I}{C_t} \right) - \beta' VT \frac{V}{V_m + V}$$
$$\dot{I} = \beta' VT \frac{V}{V_m + V} - \delta I - \kappa IF$$
$$\dot{F} = qI - dF$$
$$\dot{B} = m_1 V (1 - B) - m_2 B$$
$$\dot{A} = m_3 B - rA - \mu' VA$$

Figure: differential equations

Par	Description	value	units
р	viral production rate	0.35	$u_V/(u_T d)$
с	viral clearance rate	20	1/d
μ	rate of viral loss per unit of antibodies	0.2	$1/(u_A d)$
μ'	rate of antibody loss per virion	0.04	$1/(u_V d)$
β	rate of viral loss per target cell	5×10^{-7}	$1/(u_T d)$
β	rate of conversion from target cells to in-	2×10^{-5}	$1/(u_V d)$
	fected cells per virion		
V_m	half-activation for viral growth	10	u_V
g	basal growth rate of healthy target cells	0.8	1/d
C ₁	maximum cell capacity of the target tis- sue	7×10^{7}	u_T
δ	death/removal rate of infected cells	3	1/d
κ	killing rate of infected cells per unit of interferon	3	$1/(u_F d)$
q	interferon production rate	1×10^{-7}	$u_F/(u_T d)$
d	interferon degradation rate	2	1/d
m_1	rate of B-cell activation per virion	1×10^{-4}	$1/(u_V d)$
m_2	rate of B-cell deactivation	0.01	1/d
<i>m</i> ₃	antibody production rate from B-cells	12000	u_A/d
r	antibody degradation rate	0.2	1/d
k	kick size representing viral exposure	order 10 ⁴	uv

Figure: parameters

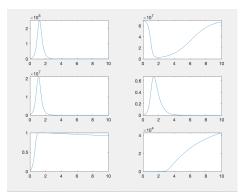
< 4[™] >

∃ ⇒

Six-plots with Initial Condition

Initial Condition:

 $\begin{bmatrix} V \\ T \\ I \\ F \\ B \\ A \end{bmatrix} = \begin{bmatrix} 15000 \\ 7 \times 10^7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$



- k represents re-exposure dose magnitude: 12000 < k < 13000
- au represents inter-exposure interval, i.e. time between kicks: 7 < au < 8
- Out of 500 simulations, 386 (77)%) of the simulations had an excursion when t=600.

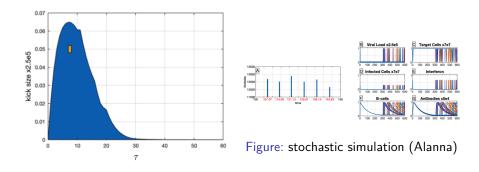


Figure: τ vs. k

7/20

Add randomness:

- *b* = 1000
- k = [12000 + (a + (b a) * rand]
- $\tau = 7 + 1 * rand(85, 1)$

```
IC = [15000; 7*10^7; 0; 0; 0; 0];
k V = 0:
k = [k \vee 0 \ 0 \ 0 \ 0];
tau = 7+1*rand(85.1);
steps = find(cumsum(tau) >= 600,1)-1;
tau = tau(1:steps):
a = 0:
b = 1000;
tall = []:
Yall = []:
kall = [];
for c = 1:steps
    [ts, Ys] = ode45(f,[0,tau(c)], IC);
    k = [12000 + (a+(b-a)*rand), 0, 0, 0, 0, 0];
    IC = Ys(end.:) + k:
    tall = [tall; ts+sum(tau(1:(c-1)))];
    Yall = [Yall; Ys];
    kall = [kall: k(1)]:
    %excursioncheck(tall, Yall);
```

end

< □ > < □ > < □ > < □ > < □ > < □ >

Strong law of large numbers: Let $X_1, X_2, ...$ be an i.i.d sequence of random variables with finite mean μ , $X_i \sim Ber(p)$. Let $S_n = X_1 + \cdots + X_n$. Then as $n \to \infty$,

$$\mathsf{P}(\lim_{n\to\infty}\frac{S_n}{n}=\mu)=1,$$

which implies that

$$\lim_{n\to\infty}\frac{X_1+\ldots+X_n}{n}=E[X]=p=\mu.$$

The Central Limit Theorem: Let $X_1, X_2, ...$ be an i.i.d sequence of random variables with finite mean μ and variance σ^2 . For n = 1, 2, ..., let $S_n = X_1 + \cdots + X_n$. Then as $n \to \infty$,

$$\frac{S_n/n-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1),$$

$$\frac{S_n}{n} - \mu \sim \frac{\sigma}{\sqrt{n}} \mathcal{N}(0,1),$$

$$\frac{S_n}{n} \sim \frac{\sigma}{\sqrt{n}} \mathcal{N}(0,1) + \mu,$$

$$\frac{S_n}{n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}),$$

which implies that as $n \to \infty$,

$$p=\frac{S_n}{n}\sim \mathcal{N}(\mu,\frac{\sigma^2}{n}).$$

- 4 同 ト 4 三 ト - 4 三 ト - -

Excursion Check Function

- Excursion: in the positions minimum time to the end, check if $Y_s \ge 2.5 \times 10^5$.
- Outputs: excursion result (0's and 1's), excursion time (quantitative)
- mean time to excursion = mean(excursion time)
- probability of excursion = mean(excursion result)

```
if max(Ys(minimum_time:end,1)) >= 2.5*10^5
%max of virsus in positions minimum_time to end, checking if that is >=2*10^5
%display('excursion')
index_of_excursion = find(Ys(minimum_time:end,1) >= 2.5*10^5,1)+minimum_time;
Ys(index_of_excursion,1);
ts(index_of_excursion);
output = 1;
output2 = ts(index_of_excursion);
else
output2 = 0;
output2 = NaN;
%display('no excursion')
end
```

< ロ > < 同 > < 回 > < 回 > < 回 > <

Probability of excursion

- *n* = 10000
- Probability of excursion pprox 0.7090
- Mean time to excursion \approx 408.7978

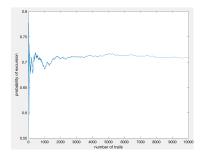


Figure: probability of excursion vs. number of trails

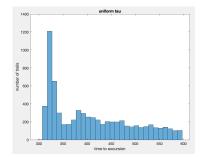


Figure: histogram of time to excursion

< A I

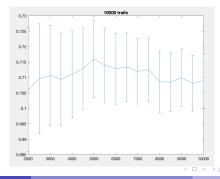
Construct Confidence Interval

• According to the Central Limit Theorem,

$$\mathbf{v} = \frac{S_n}{n} \sim \mathcal{N}(\boldsymbol{\mu}, \frac{\sigma^2}{n}),$$

we construct the Confidence Interval,

$$CI = [y \pm rac{\sigma}{\sqrt{n}} imes 1.96]$$
, where $\sigma = 0.4542$, $2000 \le n \le 10000$



$N \sim \operatorname{Pois}(\lambda), \ \tau \sim \operatorname{Exp}(\frac{\lambda}{600})$

- k represents re-exposure dose magnitude: 12000 < k < 13000.
- *N* represents the number of kicks over time interval [0,600]: *N* ~ Pois(λ), i.e. *N* ~ Pois(⁶⁰⁰/₇).
- U represents the exact times when kicks happen: $U \sim \text{Unif}(0,600)$
- τ represents time between kicks: $\tau_n = U_n U_{n-1}$.

$$\tau \sim \operatorname{Exp}(\frac{\lambda}{600}), \ E[\tau] = \frac{600}{\lambda}, \ \text{i.e.} \ \tau \sim \operatorname{Exp}(\frac{1}{7}), \ E[\tau] = 7.$$

```
N = poissrnd(lambda):
U = 600 * rand(N, 1);
sorted U = [0; sort(U); 600];
tau = [diff(sorted_U)];
steps = find(sorted U >= 600.1)-1:
tau = tau(1:steps);
a = 0:
b = 1000:
tall = []:
Yall = []:
kall = [1]:
if N>0
    for c = 1:steps
        [ts, Ys] = ode45(f,[0,tau(c)], IC);
        k = [12000 + (a+(b-a)*rand), 0, 0, 0, 0, 0];
        TC = Ys(end.:) + k:
        tall = [tall: ts+sum(tau(1:(c-1)))]:
        Yall = [Yall: Ys]:
        kall = [kall: k(1)]:
```

```
number_of_lambda = 0:31;
lambda = 600./(7+number_of_lambda*3);
```

```
%for more than one lambda, need to use the code below
prob_excursion = zeros(length(number_of_lambda),number_of_trials);
for j = 1:length(lambda)
```

```
parfor k = 1:number_of_trials
    [excursion_result(k), excursion_time(k)] = trial(<u>lambda(j));</u>
end
```

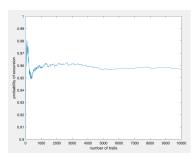
Figure: for loop of lambdas

Figure: exponentially sampling au

< ロ > < 同 > < 回 > < 回 > < 回 > <

Probability of excursion

- λ represents the average number of kicks in 600 days. $\lambda=6$
- *n* = 10000
- $\mu = mean(excursion result) \approx 0.9570$
- $\sigma = \mathsf{std}(\mathsf{excursion result}) pprox 0.2029$
- $CI = [y \pm \frac{\sigma}{\sqrt{n}} \times 1.96]$, where $\sigma = 0.2029$, $2000 \le n \le 10000$



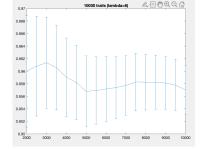


Figure: probability of excursion

Figure: probability of excursion with errorbar

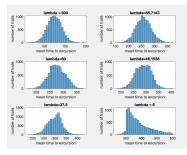
Cathy Liu

Immuno-epidemiological Model for Transient

15 / 20

How does λ influence time to excursion

- λ represents the average number of kicks in 600 days.
- $\frac{600}{\lambda}$ represents the average time between kicks. $E[\tau] = \frac{600}{\lambda}$.
- \bullet As λ increases, time to excursion is more likely to have Gaussian distribution.
- Also, as λ increases, the mean time to excursion decreases.



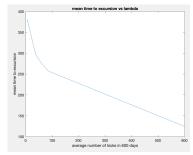
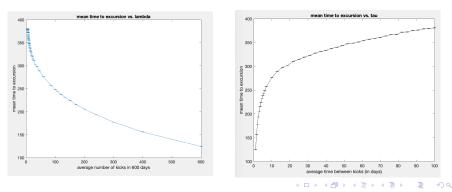


Figure: histogram of time to excursion corresponding to different lambdas

Figure: mean time to excursion vs. lambda

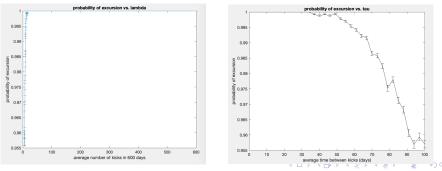
How does λ and τ influence the mean time to excursion

- λ represents the average number of kicks in 600 days.
- τ (i.e. $\frac{600}{\lambda}$) represents the average time between kicks. $E[\tau] = \frac{600}{\lambda}$.
- 32 points, each one corresponds to a specific λ .
- As λ increases, the mean time to excursion decreases.
- As au increases, the mean time to excursion increases.



How does λ and τ influence the probability of excursion

- λ represents the average number of kicks in 600 days.
- τ (i.e. $\frac{600}{\lambda}$) represents the average time between kicks. $E[\tau] = \frac{600}{\lambda}$.
- As λ increases, the probability of excursion increases and approaches to 1.
- As au increases, the probability of excursion decreases.
- By constructing the errorbar, we conclude it has a potential to be a smooth curve.



Immuno-epidemiological Model for Transient

Spring 2022

Future Direction for Further Exploration

• Bifurcation analysis

< 47 ▶

< ∃⇒

э

Thanks for listening!

イロト イボト イヨト イヨト

э