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FitzHugh-Nagumomodel

The FitzHugh-Nagumo model is a two-dimensional differential equations

model derived from the Hodgkin-Huxley model for neuron spikes in squid

giant axons. The system consists of two coupled differential equations,

shown below, where the x-variable represents a membrane potential
(voltage) in an excitable cell and the y-variable is an abstract model for the
ion channel in the cell that causes the x-variable to settle after spiking.

ẋ = −x(x − 1)(x − 2) − y

ẏ = 0.1(x − 0.2) + r

When r = 0, the system has a stable equilibrium at the intersection of
x = 0.2 and y = −x(x − 1)(x − 2). However, different initial conditions can
result in qualitatively different trajectories of the solution. See Figure 1,

which shows trajectories with initial conditions (0.15, −0.5) and (0.15, −0.45).
As r approaches r0 = −0.08 + 0.1

√
3−1

(this is the value such that the vertical

nullcline intersects the cubic nullcline at its local minimum), the system

undergoes what is known as a Hopf bifurcation. For r > r0, the system has a

stable equilibrium point that is converged to by solutions that start nearby.

For r < r0, the equilibrium point is no longer stable. Instead, solutions

converge to a stable limit cycle, which is a closed trajectory representing

steady periodic behavior. See Figure 3.
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Figure 1. Phase portraits
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Figure 2. Time series
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Figure 3. Hopf bifurcation

Stochastic flow-kick FitzHugh-Nagumomodel

Our aim is to study what we call a stochastic flow-kick version of the FHN

model defined above. With r = 0 and some given initial condition, we let the
system evolve for a random time τ called the flow time. Then, we

instantaneously perturb the y-variable of the solution by a random amount κ
called the kick. The system then continues to evolve and this process of flow

then kick is repeated again and again. The flow times are exponentially

distributed, the kicks are uniformly distributed, and all are independent.

Consider the system with fixed kick distribution Unif(−0.1, 0) and flow time
distribution Exp(τ̄−1), where τ̄ represents the mean flow time. Qualitatively
different behaviors can occur for different values of τ̄ .
If τ̄ is small (a notion to be explored in the rest of the poster), frequent kicks
result in many spikes of the x-variable, which we refer to as excursions. In
contrast, if τ̄ is large, excursions are less likely to occur. More precisely, an

excursion is defined to occur when x surpasses the threshold r0 = 1 +
√

3−1

(the maximum of the x-nullcline). See Figure 4 for phase portraits and time
series plots exhibiting some possible behaviors.
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Figure 4. The left pane shows phase portraits corresponding to excursion and no excursion. The

middle and right panes show time series corresponding to blue curve and red curve respectively.

Objectives

Investigate the effect of varying τ̄ on:

probability of excursion

distribution of the interspike interval time σ
distribution of the excursion time χ spent orbiting a limit cycle

Results

As τ̄ increases, the probability of an excursion happening within a fixed time
interval decreases. Figure 5(a) shows this decreasing trend when the system is

run for 1000 time units and τ̄ = 1, 2, . . . , 10.
When τ̄ = 1, kicks happen so frequently that excursions happen with near cer-
tainty. See Figure 5(b).
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(a) Probability of excursion vs. τ̄
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(b) τ̄ = 1
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(c) τ̄ = 4
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(d) τ̄ = 10

Figure 5. Pane (a) shows the dependence of the probability of excursion on τ̄ . Panes (b), (c), (d)
show typical time series plots for x with various values of τ̄ .

The time until an excursion happens, commonly referred to in the literature as

the interspike interval, is believed to be exponentially distributed. In Figure 6

(left), we let τ̄ = 5 and use maximum likelihood estimation, implemented with
histfit in MATLAB, to fit interspike interval data to an exponential density
(red curve) with σ̄ = 111.38 with 95% confidence interval σ̄ ± 2.1835. Figure 6
(right) also gives a graphical justification for fitting our data to the exponential

distribution by using a Q-Q plot. The linearity of the data points suggests that

our data falls into the theoretical quantiles of an exponential distribution. Similar

fits hold with other values of τ̄ in our experiments.
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Figure 6. Interspike interval σ data

When an excursion occurs, there can be multiple trips around the limit cycle

(ie. consecutive spikes occur as in Figure 5c) or only one (ie. spikes are isolated

as in Figure 5d). We call the time χ spent orbiting a limit cycle the excursion

time. The distribution of χ is qualitatively different for various values of τ̄ . When
τ̄ = 4, the probability distribution of χ is concentrated around multiple values,
indicating multiple consecutive spikes. When τ̄ = 10, the probability distribution
is concentrated around a single value, indicating isolated spikes. See Figure 7.
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Figure 7. Histogram of χ for τ̄ = 4 and τ̄ = 10

Future directions

Develop mathematical frameworks that can explain the observed behavior

of σ and χ under varying conditions on τ .
Analyze further statistical properties of the system, such as the number of

excursions in each limit cycle.
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