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Background & Motivation

Infectious diseases pose a significant public health threat, necessitating compre-

hensive understanding of their transmission dynamics. Previous research in mathe-

matical biology has focused on the immune response dynamics within naive hosts.

However, a research gap persists around the impact of re-exposure during ongoing

outbreaks on immune responses of previously infected individuals.

Our study addresses this gap by investigating a modified differential equations

model with re-exposure events, called a flow-kick system. We aim to analyze the

behavior of the flow-kick system under stochastic perturbation, where re-exposure

events occur randomly according to various probability distributions.

The incorporation of stochasticity in the flow-kick system allows for a more realistic

representation of real-world outbreak dynamics. Findings from this research may

contribute to the development of improved models and strategies for infectious

disease control and prevention.

Model

Our influenza model integrates innate and adaptive immunity, including virus

(V ), target cells (T ), infected cells (I ), interferon (F ), B-cells (B), and antibodies

(A). We examine the virus’s impact on target cells, generating more infected

cells and virus. Innate immunity eliminates infected cells through interferon (F ),

while adaptive immunity employs B-cells (B) producing antibodies (A) to

neutralize the virus.

The variables V , T , I , F , B, A represent quantities of the immune system

components described above. The interactions between these components are

modeled according to the following system of differential equations.

V̇ = pI − cV A − µV A − βV T V
Vm+V

Ṫ = gT
(

1 − T+I
Ct

)
− β′V T V

Vm+V

İ = β′V T V
Vm+V − I − κIF

Ḟ = qI − dF

Ḃ = m1V (1 − B) − m2B

Ȧ = m3B − rA − µ′V A

A deterministic flow-kick model takes a solution of the system of differential

equations described above and introduces instantaneous perturbations of size

k of the solution at discrete times with inter-kick time τ .

A stochastic flow-kick model uses random values for k and τ .

k denotes sudden exposure events (modeled by discrete increases in virus).

flow time τ represents the inter-kick time.

An excursion (observable illness) is defined as a scenario where the number of

infected cells exceeds a threshold (2.5 × 105) after a short burn-in period (5
days) since the simulation’s initiation.

We employ a Monte Carlo simulation of the stochastic flow-kick system. Kicks

are sampled uniformly from a given interval, and flow times are sampled either

uniformly or through a Poisson process.

Objectives

Simulate the probability of reinfection and the time to reinfection when

kick size k is uniformly distributed on a fixed range and flow time τ is
uniformly distributed or exponentially distributed.

Quantify the relationship between the probability of infection and time to

reinfection with respect to the parameters of the distributions of k and τ .

Figure 1. [3] Safe zone with respect to k and τ
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Figure 2. Probability of infection vs. number of trails

Figure 3. Probability of reinfection Figure 4. Smooth interpolation of slices in Figure 3

Results: uniformly distributed τ

Figure 1 [3]: The blue region in the Figure 1 represents values of k and τ for

which an excursion does not happen in the deterministic flow-kick system. We

call this the safe zone.

Figure 2: In the stochastic flow-kick system, whether an excursion happens for

given values of k and τ is uncertain. If k and τ are uniformly sampled from the yel-

low rectangle depicted in Figure 1, the probability of excursion is approximately

71%. Figure 2 shows convergence to this value using Monte Carlo simulation.

Not shown in the figure is the fact that the mean time to excursion is approxi-

mately 408 days.
Figure 3: The yellow rectangle in Figure 1 represents values of k and τ where

12000 < k < 13000 and 7 < τ < 8. We wish to approximate the probability of

excursion given that we sample k and τ uniformly over other subregions of the

blue safe zone of Figure 1. We sample uniformly over subregions of the form

k0 < k < k0 + 1000 and τ0 < τ < τ0 + 1. Figure 3 shows the dependence of the

probability of excursion (z-axis) on the values of k0 and τ0 for k0 = 1000, 2000, ...,
11000 and τ0 = 4, 5, ..., 12. Figure 4 shows a smooth interpolation of the slices

depicted in Figure 3.

Figure 5: For τ0 small enough, the relationship between probability of excursion

and k0 is approximately logistic, smoothly increasing as k0 increases. A logistic

regression fit is depicted in Figure 5. Such fits might be possible for other values

of τ0 if the range of k0 is restricted appropriately. Note that the τ0 = 7 slice of

Figure 3 is graphed using a portion of the data used in Figure 5.
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Figure 5. Probability of infection vs. k0, when τ0 = 7
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Figure 6. Probability of infection vs. mean of τ
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Figure 7.Mean/median/mode of time to reinfection Figure 8. Histogram of the time to excursion

Results: exponentially distributed τ

We conducted 60000 simulations to analyze the stochastic flow-kick system,

sampling τ from exponential distribution with its mean varying from 7 to 100,
while sampling the kick size k uniformly between 12000 and 13000.
Figure 6: The data elucidates a noteworthy correlation: when the mean flow

time remains under 40 days, individuals experience an almost certain probability

(close to 1) of reinfection. As the mean flow time increases, the probability of

reinfection exhibits a corresponding downward trend.

Figure 7: The yellow, blue, and red curves respectively represent the relationship

between the mean, median, and mode of the time to reinfection with the mean

flow time. As the mean flow time increases, these three curves display a syn-

chronous upward trend. This pattern implies that extended intervals between

exposures are associated with a longer timespan required for an individual to

encounter reinfection.

Figure 8: The presented histograms illustrate various distributions of time to

excursion, each corresponding to a distinct mean flow time. When the mean of

τ is 1, the time to excursion appears to be a normal distribution. However, as the

mean of τ increases, the distribution becomes progressively more right-skewed.

Future directions

Validate the hypothesis that as the mean flow time increases, the time to

excursion tends to follow a normal distribution.

Establish a quantitative relationship between the distribution of τ and the

distribution of the time to excursion.
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