- Thursdays 1:15-2:15

- Tuesdays 4:00-5:00

What is this class about?

- learning about mathematical reasoning and structures - learning to read and communicate mathematics (largely by learning to read and write proofs)
- getting an introduction to the basics of analysis (real number, limits, sequences, continuous functions)

- Keynords: series steps involving deductive reasoning, starting from ansumptions leading to conclusion - complete sentences, paragraph form, important calculations on display
 - point is to communicate, share knowledge, convince (yourself, others) something is true

Math 206 — Discussion handout

Below are three (informal) arguments, labeled Note 1, Note 2 and Note 3, for or against the claim that 1 = 0.999... After reading the arguments, discuss the three questions below in a group of two or three.

Note 1. Observe that 1/3 = 0.333... Multiply both sides by 3 to get 1 = 0.999...

Note 2. Let x = 0.999... Multiply by 10 so that you have 10x = 9.999... Now subtract x from both sides of this equation and solve for x:

$$10x - x = 9.999 \dots - x$$

 $9x = 9.999 \dots - 0.999 \dots$
 $9x = 9$
 $x = 1.$

Note 3. Actually, $1 \neq 0.999...$ This is due to the fact that every real number has a unique decimal expansion.

Question 1. Do you believe the claim is true or false? Do you believe any of the arguments? What assumptions are being made? What makes you wonder?

Question 2. Informally speaking, what do you think a mathematical proof is? How should it look? What is the purpose of proofs? What do you anticipate is hard about writing proofs?

Question 3. What are some things we can do in support of our learning and in support of a positive environment?

Definition A (logical) statement is a sentence that can be determined to be true or fake but not both

Examples Which of these are statements?

Which statements are true?

- (Seven is a prime number.
- (All odd numbers are prime.
- @ Hi, welcome to class.
- @ For each person in class, there is a date on which they were burn.
- € For each date, there is a person in class who was born on that date.

Connectives given a statement or statements we can form new (compound) statements wring connective operators:

Connective	Name	English equivalent
٩٦	hegation	"not P"
PAQ	conjunction	"P and Q"
PvQ	disjunction	"P ~ Q"
P → Q	in plication	"if P," then Q" or "Q when P" or conclusion
P⇔Q	bi wond it ional	"P only if Q" "P if and only if Q"

R = "you clean your room", S = "you can go to your friend's house." U = "3 is an even number" W = "2 > 1"

Write the following in English antonces:

- ⊙ ¬U "3 is an odd number"
- (PAQ "I like trimators and pizza"
- C PVQ "I like tomators or pizza"
- (d) R⇒S "If you clean your room, then you can go to your friend's house."

Truth tables : a way to summarize the possible true/false values of the statements above

<u>P -P</u>	P	Q	PAQ			PVQ
<u>P -P</u> T F F T	т	Т	Т	Т	Т	Τ Τ Γ
FIT	τ	F	F F F	т	F	т
	F	Т	F	F	Т	T
	F	F	F	F	F	F

-			P ⇐> G	2 1	s defined
<u> </u>	Ŋ	₽⇒Q			
Т	Т	Т	to be	(P=	>Q)∧(Q⇒P)
т	F	T F T	P	Q	Pa Q
F	Т	Т		T	<u>τ</u>
Ŧ	F	Т	' 	1	- -
•			ı	F	
			F	Т	F
			Ē	F	Ρ⇔ Q T F F T

P	Q	PVQ	7 (PV Q)	٩r	7 Q	Prng
Т	τ	τ	F	۴	F	F
т	F	т	F F F T	F	т	F
F	τ	Ť	F	Т	F	F
F	۴	F	τ	Т	Т	Т

Def Two statements P and Q are equivalent if they have the same truth values. We write P=Q when this happens.

Example negate the sentence "I like tomatoes or pizza" "I do not like tomatoes and I do not like pizza" "I like neither tomatoes nov pizza"