Math 206 — Power sets and Cartesian products

Problem 1. Let A be a set and $\mathcal{P}(A)$ its power set. Determine which of the following statements are true.

- a. $A \in \mathcal{P}(A)$
- b. $\emptyset \subseteq \mathcal{P}(A)$
- c. $\emptyset = \mathcal{P}(\emptyset)$
- d. $\{\emptyset\} = \mathcal{P}(\emptyset)$
- e. If $a \in A$ then $\{a\} \subseteq \mathcal{P}(A)$

Problem 2. Consider the following expressions. In each, replace \Box by either the symbol \in or the symbol \subseteq to make a correct statement.

- a. $\mathbb{N} \Box \mathbb{Z}$
- b. $\{1, 2, 3\} \square \mathbb{Z}$
- c. $\{5\} \square \mathbb{Z}$
- d. $\mathbb{Z}^+ \Box \mathcal{P}(\mathbb{Z})$
- e. $\{1, 2, 3\} \square \mathcal{P}(\{1, 2, 3\})$
- f. $5\Box\mathbb{Z}$
- g. $\emptyset \Box \mathbb{Z}$
- h. $\emptyset \Box \mathcal{P}(\mathbb{Z})$

Problem 3. Give an informal geometric description of the following sets. Are they same set?

- a. $\mathbb{Z}\times\mathbb{R}$
- b. $\mathbb{R} \times \mathbb{Z}$

Problem 4. Let A be any set. Make a conjecture about how to simplify $A \times \emptyset$. Explain your simplification.

Problem 5. Let A, B, C, D be sets. The following statement is false

 $(A \cup C) \times (B \cup D) \subseteq (A \times B) \cup (C \times D).$

Use your conjecture from Problem 4 to find a counterexample.