Math 206 — Inequalities and proofs by cases

Problem 1. Our goal in this problem will be to prove the triangle inequality, which is a theorem that says: if $x, y \in \mathbb{R}$ then $|x + y| \leq |x| + |y|$. Start by proving each of the following cases, which break things down into assumptions about x and y.

- a. Prove the case when x > 0 and y > 0.
- b. Prove the case when x < 0 and y < 0.
- c. Consider the case when x < 0 < y.
 - 1. Prove the subcase when $|x| \leq y$.
 - 2. Prove the subcase when |x| > y.
- d. What case is left to do? What can you say about this case?
- e. After class, put your work together into a full proof.

Problem 2. Sometimes it is useful to use the old trick of adding zero: for any real numbers x and a we have x = x + a - a. Use this trick along with the triangle inequality to prove that if $x \in \mathbb{R}$ and if $|x-3| \leq 1$ then $|x^2 - 9| \leq 7$.

Problem 3. Let $x \in \mathbb{R}$. Prove that if $|x+1| \leq 2$ then $|(x+1)(x^3-2)| \leq 58$.

Problem 4. Express the following sets as open or closed intervals using interval notation.

a.
$$\{x \in \mathbb{R} : |x| < 5\}$$

- b. $\{x \in \mathbb{R} : |x| \le 1\}$
- c. $\{x \in \mathbb{R} : |x 1| < 3\}$
- d. $\{x \in \mathbb{R} : |x+2| \le 8\}$