Math 206 — Operations on Sets

Problem 1. Let A, B, and C denote subsets of some universal set. The following is a list of partial statements for general properties involving sets and set operations. Fill in the blanks to complete the statement.

- a. \emptyset _____A and A _____A. Fill in the blanks with $\subseteq, \in, \not\subseteq$, or \subsetneq
- b. $(A^c)^c =$ _____
- c. $A \cup \emptyset =$ _____
- d. $A \cap \emptyset =$ _____
- e. $A \cap A =$ _____
- f. $A \cup A =$ _____
- g. Associative property: $(A \cup B) \cup C =$ _____
- h. Associative property: $(A \cap B) \cap C =$ _____
- i. Distributive property: $(A \cup B) \cap C =$ _____
- j. Distributive property: $(A \cap B) \cup C =$ _____
- k. DeMorgan's Law: $(A \cup B)^c =$
- l. DeMorgan's Law: $(A \cap B)^c =$
- m. Fill in the blanks with \subseteq , =, or \supseteq :
 - 1. $A \subseteq C$ and $B \subseteq C$ if and only if $A \cup B$ _____C
 - 2. $C \subseteq A$ and $C \subseteq B$ if and only if $A \cup B$ _____C
 - 3. $B \subseteq A$ if and only if $A \cup B$ _____A
 - 4. $B \subseteq A$ if and only if $A \cap B$ _____B

Problem 2. Let A, B, C be sets. Suppose $C^c \subseteq B$. Prove that $(A \setminus B) \cup C = C$.