Math 241, Spring 2022 — Homework 6

Tim Chumley

Due March 30 at 5:00 pm

Instructions. This problem set covers material from Week 9 of class.

Problem 1. The following questions are about the logistic map $F_{\lambda}(x) = \lambda x(1-x)$ and mimic the ideas we discussed about the quadratic map $Q_c(x) = x^2 + c$ when c < -2.

- 1. Make a plot with a slider of $F_{\lambda}(x)$ in Desmos along with the lines y = 0, y = 1, x = 0, x = 1. What do you notice about the graph of $F_{\lambda}(x)$ in relation to the square bounded by the 4 given lines, particularly when $\lambda > 4$.
- 2. Suppose $\lambda > 4$ and let I = [0, 1].
 - (a) If $x_0 \notin I$, what can you say about the orbit of x_0 ? Does any iterate of x_0 enter I? Justify your claim graphically and describe the behavior of iterates of x_0 in words.
 - (b) Let $A_1 \subseteq I$ be the set of initial seeds whose orbit leaves I after 1 iteration of F_{λ} . That is, A_1 consists of $x_0 \in I$ such that $F_{\lambda}(x_0) \notin I$. Make a sketch in the *xy*-plane of $F_{\lambda}(x)$, label the set A_1 in your graph, and give a brief justification in words.
 - (c) Repeat the previous part with the set $A_2 \subseteq I$ of initial seeds whose orbit leaves I after 2 iterations of F_{λ} .
 - (d) One more: repeat the previous part with the set $A_3 \subseteq I$ of initial seeds whose orbit leaves I after 3 iterations of F_{λ} .
- 3. Like in the previous part, suppose $\lambda > 4$ and continue with established notation. Let $\Lambda = I \bigcup_{n=1}^{\infty} A_n$ be the set of initial seeds x_0 with the property $F_{\lambda}^n(x_0) \in I$ for all n. Your previous work might make it feel like Λ is actually an empty set, but explain why Λ is non-empty. More precisely, explain why it actually contains infinitely many points.
- 4. Challenge problem (not for credit): Find a value $\lambda_0 > 4$ so that whenever $\lambda > \lambda_0$ we have $F'_{\lambda}(x) > 1$ for all $x \in I A_1$. Use this to explain, at least in the case where $\lambda > \lambda_0$, why the set Λ contains no intervals, mimicking the discussion in Section 7.2.

Problem 2. Do the following exercises from Chapter 7, page 89.

- 1. Exercise 9. Note that you can use the following syntax in Desmos to make the piecewise graph: $T(x) = \{x \le \frac{1}{2} : 3x, x > \frac{1}{2} : 3 - 3x\}.$
- 2. Exercise 12. You may give a graphical analysis argument to do this problem. It's helpful to plot the box bounded by the lines y = 0, y = 1, x = 0, x = 1 too.
- 3. Exercise 13. Again, you may give a graphical analysis argument. It might be helpful to plot $T^2(x)$ in Desmos to see the significance of the given intervals.
- 4. What do you think can be said about the orbits of initial seeds x_0 in the Cantor middle thirds set under iteration of T?

Problem 3. Do the following exercises from Chapter 7, page 89.

- 1. Exercise 3
- 2. Exercise 5
- 3. Exercise 6