Math 241, Spring 2022 — Homework 8

Tim Chumley

Due April 13 at 5:00 pm

Instructions. This problem set covers material from Week 11 of class.

Problem 1. Let K be the Cantor middle-thirds set. In class we learned that when $x \in K$ the ternary expansion of

$$T(x) = \begin{cases} 3x & x \le 1/2\\ 3 - 3x & x > 1/2 \end{cases}$$

is closely related to the ternary expansion of x. In particular, we learned that if $x = 0.0s_2s_3s_4...$ then $T(x) = 0.s_2s_3s_4...$ and if $x = 0.2s_2s_3s_4...$ then $T(x) = 0.(2 - s_2)(2 - s_3)(2 - s_4)...$

- 1. Let $x \in K$ be the value with ternary expansion $0.\overline{020}$. Give the ternary expansions of $T(x), T^2(x)$, and $T^3(x)$ and describe what kind of point x is (fixed? *n*-periodic? eventually *n*-periodic? none of these?).
- 2. Let $x \in K$ be the value with ternary expansion $0.\overline{0022}$. Give the ternary expansions of $T(x), T^2(x)$, and $T^3(x)$ and describe what kind of point x is (fixed? *n*-periodic? eventually *n*-periodic? none of these?).
- 3. Let $x \in K$ be the value with ternary expansion $0.\overline{002220}$. Give the ternary expansions of $T(x), T^2(x)$, and $T^3(x)$ and describe what kind of point x is (fixed? *n*-periodic? eventually *n*-periodic? none of these?).
- 4. In Desmos, I made a plot of $T^4(x)$ and found that it intersected with y = x at various x-values (which are thus period-4 points). Of course, Desmos does not give the exact x-value of the intersection points, only decimal approximations. One of these was the value $x \approx 0.0366$. Find the exact value of this intersection point by trying to find its ternary expansion. *Hint: it will have a repeating ternary expansion with an 8-digit pattern that repeats.*

Problem 2. Our exercise in class and the problem above show that finding periodic points of T is not straightforward. Let's consider a new map $\sigma : K \to K$ that acts on ternary expansions in a simpler way: given any $x = 0.s_1s_2s_3...$

$$\sigma(x) = 0.s_2 s_3 s_4 \dots$$

Notice that σ just deletes the first coefficient in the ternary expansion of x like T did for values of $x \leq 1/3$ but σ acts this way for *every* element of K. This map is called the *shift map* and we will see that it's much easier to find fixed points for σ .

- 1. There are two fixed points of σ . State their ternary expansions.
- 2. There are two period-2 points of σ that are not fixed. State their ternary expansions.
- 3. There are six period-3 points of σ that are not fixed. State their ternary expansions.
- 4. In words, how would you identify a period-4 point of σ ?
- 5. How many period-*n* points does σ have?