Fractals - Sierpinski Triangle/Carpet, Topological **Dimension and Fractal** Dimension

Motivation

This **Fern** consists of many small leaves that branch off a larger one.

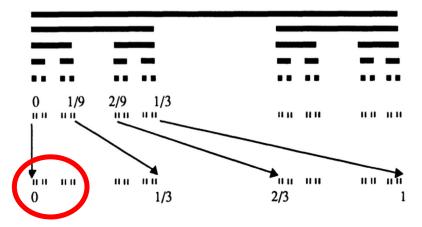
This Romanesco broccoli consists of smaller cones spiralling around a larger one.

- Never-ending pattern
- Picture of chaos
- Mathematically, it is self-similarity
- fractal dimension exceeds its topological dimension

Topological dimension

- Our "everyday" notion of dimension.
- Defined inductively.

- Definition: A set S has topological dimension k if each point in S has arbitrarily small neighborhoods whose boundaries meet S in a set of dimension k-1, and k is the smallest non-negative integer for which this is true.
- base case: A set has topological dimension zero if every point in S can have arbitrarily small neighborhoods whose boundaries do not intersect S



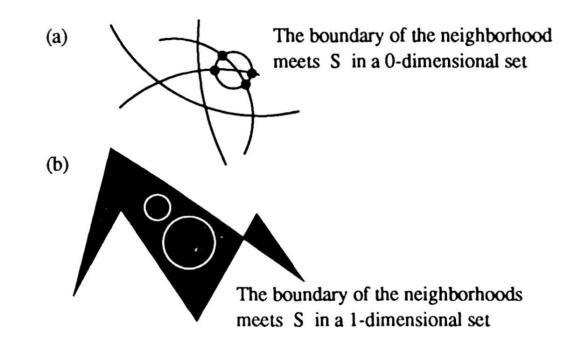


FIGURE 14.13

A set with topological dimension (a) 1, (b) 2.

Fractal dimension

- **Definition:** A set S is called affine self-similar if S can be subdivided into k congruent subsets, each of which may be magnified by a constant factor M to yield the whole set S
- Fractal dimension is a more comprehensive measurement of dimension across various types of set S
- How to calculate fractal dimension?

Definition. Suppose the affine self-similar set S may be subdivided into k pieces, each of which may be magnified by a factor of M to yield the whole set S. Then the *fractal dimension* D of S is

$$D = \frac{\log(k)}{\log(M)} = \frac{\log(\text{number of pieces})}{\log(\text{magnification factor})}.$$

Fractal dimension - Examples

For a line:
$$D = \frac{\log(n^1)}{\log(n)} = \frac{1\log(n)}{\log(n)} = 1.$$

For a square: $D = \frac{\log(n^2)}{\log(n)} = \frac{2\log(n)}{\log(n)} = 2.$
For a cube: $D = \frac{\log(n^3)}{\log(n)} = \frac{3\log(n)}{\log(n)} = 3.$

These numbers agree with the topological dimensions, so despite self-similarity, these shapes are not fractals.

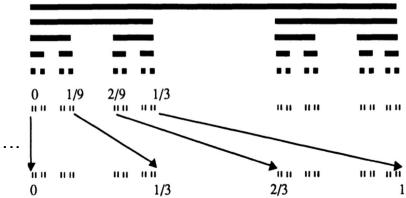
What about the fractal dimension of the Cantor middle thirds set? Is it a fractal? (I.e. is the fractal dimension greater than its topological dimension?

For the **Cantor Middle thirds set**, the number of intervals at each stage of the construction is 2ⁿ and the magnification factor 3ⁿ when applied to any interval, yields the entire Cantor set.

So its fractal dimension

$$D = \frac{\log (\text{Number of pieces})}{\log (\text{magnification factor})} = \frac{\log 2^n}{\log 3^n} = \frac{n \log 2}{n \log 3} = 0.6309.$$

Therefore the Cantor middle thirds set is a fractal because it is affine self similar, and *the fractal dimension exceeds its topological dimension*.

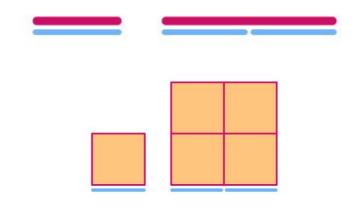


Fractal dimension - Extra examples on how to apply it

Exercise 2: Give explicitly the iterated function system that generates the Cantor middle-fifths set. This set is obtained by the same process that generated the Cantor middle-thirds set, except that the middle fifth of each interval is removed at each stage. What is the fractal dimension of this set?

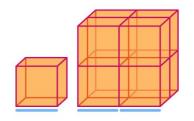
Exercise 3: Consider the set C obtained from the interval [0,1] by first removing the middle-third of the interval and then removing the middle fifths of the two remaining intervals. Now iterate this process, first removing middle thirds, then removing middle fifths. The set C is what remains when this process is repeated infinitely. Is C a fractal? If so, what is its fractal dimension?

Revisiting fractals: a dimension of n will increase its area/volume by 2ⁿ



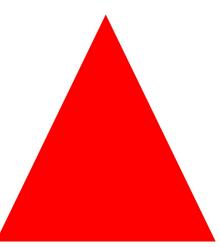
A line has a dimension of 1. When scaling it by a factor of 2, its length increases by a factor of $2^1 = 2$

A square has a dimension of 2. When scaling it by a factor of 2, its area increases by a factor of **2^2=4**



A cube has a dimension of 3. When scaling it by a factor of 2, its volume increases by a factor of **2^3=8**

Sierpinski triangle

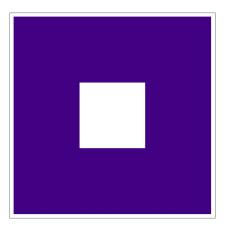


Calculating its dimension, using the fact that a dimension of n will increase its area/volume by 2ⁿ:

 $2^{d} = 3$. In other words, d = log 2(3) = 1.585...

- Begin with the equilateral triangle
- Then, remove from the middle a triangle whose size is exactly **1**/**2** that of the original triangle
- This leaves 3 smaller equilateral triangles, each of which is exactly 1/2 the size of the original triangle

Sierpinski carpet



Calculating its dimension, using the fact that a dimension of n will increase its area/volume by 2ⁿ:

 $3^d = 8$. In other words, d = log3(8)

How can something has a dimension that is not an integer?

The Sierpinski triangle is something in-between a two-dimensional area, and a one-dimensional line.

In fact, it is subscribing to the fractal dimension

- Start with a square and break this square into **9** equal-sized subsquares
- Remove the open middle subsquare
- This leaves 8 equal-sized subsquares