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1.
The orbit diagram



“ Orbit diagram: the dynamics of Qc for 
many different c values in one picture(an 

attempt)
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“
In the orbit diagram we plot the parameter c on the 

horizontal axis versus the asymptotic orbit of 0 under Qc 
on the vertical axis. We use the orbit of the critical 
point(0) to plot the orbit diagram. 
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“
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Definition 

Suppose F : R→R. A point x0 is a critical point of F if 
F’(x0) = 0. 

(0 is the only critical point of Qc)
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As c decreases, we seem to see a succession of period-doubling 
bifurcations. It seems that periodic points first appear in the order

1, 2, 4, 8,..., 2^n
n

,....

Observation 1
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Observation 2

In each period-n window, 
we seem to see the 
appearance of an attracting 
n-cycle followed by a 
succession of period-doubling 
bifurcations.
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Observation 3

The orbit diagram 
appears to be self-similar: 
when we magnify certain 
portions of the picture, the 
resulting image bears a 
striking resemblance to the 
original figure.
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Observation 4

It appears there is at 
most one attracting cycle for 
each QC .
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Observation 5

It appears that there is a 
large set of c-values for which 
the orbit of 0 is not attracted 
to an attracting cycle.
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This is a glimpse of chaotic behavior.
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2.
The Period Doubling Route to Chaos
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Figure : Graphs of QC Figure : Graphs of Q2

C



We can see that the graphs of Q2
C resembles very closely to 

the corresponding graph of QC only on a much smaller interval
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Figure : Graphs of QC Figure : Graphs of Q2

C
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Figure : Graphs of QC Figure : Graphs of Q2

C



We can say that the function Q2
C undergoes a similar 

sequence of dynamical behaviors on this interval as Qc did on 
the larger interval (again, because they resemble each other). 

So we can expect a small part of Q4
C to look similar to Q2

C 
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This is the beginning of a process called renormalization

19



After what we’ve seen, how do we understand 
renormalization?

When we zoom into a small subinterval of the graph of the 
previous stage, the map that we get resembles the previous 

stage.
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At the nth stage, we find a tiny subinterval on which  Q2n
C  

resembles the original function. In particular, as c decreases, 
the graph of Q2n

C  make the transition from a saddle-node 
bifurcation , through a period doubling, and on into the 

chaotic regime.  
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This right here is a saddle node bifurcation

This is a saddle node bifurcation too but in 
the context of Q2

C , it is period doubling.



At the nth stage, we find a tiny subinterval on which  Q2n
C  

resembles the original function. In particular, as c decreases, 
the graph of Q2n

C  make the transition from a saddle-node 
bifurcation , through a period doubling, and on into the 

chaotic regime.  
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3.
Feigenbaum’s Constant



The Formation of Chaos  
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f(x) = ax (1-x)



Period-Doubling Bifurcation Points
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● A period doubling bifurcation 
occurs when a slight change in 
a system’s parameters causes a 
new periodic trajectory to 
emerge from an existing 
periodic trajectory 

● The new one doubles the 
period of the original .

Bifurcations



Definition of Feigenbaum Constant 
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● The Feigenbaum constant is the limiting ratio of each bifurcation interval to the next 
between every period doubling. 

● Given an are discrete values of a at the nth period doubling point, the limit is shown as 
below: 



Feigenbaum Constant Exploration 
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● F(x) = x^2 + c



Feigenbaum Constant Exploration 
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n Period = 2^n Bifurcation Value Ratio = Cn-1 - Cn-2 / Cn - Cn-2

1 2 -0.75 /

2 4 -1.25 /

3 8 -1.3680989 4.2337

4 16 -1.3940462 4.5515

5 32 -1.3996312 4.6639

6 64 -1.4008287 4.6682



Feigenbaum Constant Exploration 
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STEPS:
1. Compute the first 2^n points on the orbit of the critical point 
2. Record the values in tabular form 
3. Use calculator to compute the ratios. 



4.
Computing Feigenbaum’s Constant



Feigenbaum Constant Exploration 
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Trying it with hand: 
Goal: Finding values of Ci where 0 is a periodic point of
Qci (x) = x2 + c of prime period 2i where i = 0,1,2,4,5,6 … 

- > With the c values found, we can compute the ratio between 
every period doubling 



Feigenbaum Constant Exploration 

33

…

-> Because it is a lot of algebra, we can use a MATLAB code 
to compute the C values for us!



Feigenbaum’s Constant Exploration
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Feigenbaum Constant Exploration 
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… For x2 + c, 



Feigenbaum Constant Exploration 
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Conclusion
-> We can see that as we proceed with finding the c-value of the 
function, the ratio of the intervals between bifurcation points 
approaches Feigenbaum’s constant. 



Significance of 
Feigenbaum’s 

constant

- Universal constant of chaos theory (at first it 
was only discovered for the logistic maps)

- Feigenbaum’s constant appears in problems 
of fluid-flow turbulence, electronic 
oscillators, chemical reactions, etc.

-
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Theorem: If x0 is an attracting periodic point for F, 
there is a critical point of F whose orbit is attracted to the 
orbit of x0.

This theorem explains why we see at most one 
attracting periodic orbit for the quadratic family Qc(x) = 
x^2+c.
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