On Caterpillars, Trees, and Stochastic Processes

Camille Cheng and Giovanna Giuliano

Introduction to the problem

"A bird carrying a caterpillar in its beak flies over a tree. The caterpillar jerks free, and falls into the tree onto a node. What is the expected number of leaves the caterpillar finds above her in the portion of tree stemming from her landing point?"

Why is this a stochastic problem?
What must we specify to be able to solve this problem?

Problem specifications

Define a sequence of Fibonacci trees: each new tree T_{k} is built by adding the previous two trees onto it. The number of "leaf-nodes," or the number of vertices at the ends, will follow the Fibonacci sequence for $\mathrm{k}>=3$.

Let F_{k} be the number of leaf-nodes in T_{k}.
Let N_{k} be the total number of nodes in T_{k}. It can be shown that $N_{k}=2 F_{k}-1$.

The caterpillar falls onto a node with equal probability (if there are N_{k} nodes, then the probability any one node is landed on is $1 / N_{k}$)

Solving the problem: T_{6}

Let's consider answering this problem for a simple tree, T_{6}

For each node 1-15, we can count the number of leaves above that node.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
8	5	3	3	2	2	0	2	0	0	0	0	0	0	0

Let L be the number of leaves above the node. Based on our table above, we can calculate the probability of each value of L

L	0	2	3	5	8
$\mathrm{P}(\mathrm{L})$	$8 / 15$	$3 / 15$	$2 / 15$	$1 / 15$	$1 / 15$

And we can now calculate the expectation of L using our definition of expectation:

$$
E[L]=\sum_{n=1}^{\infty} £ p(L)=0 \cdot \frac{8}{15}+2 \cdot \frac{3}{15}+3 \cdot \frac{2}{15}+4 \cdot \frac{1}{15}+5 \cdot \frac{1}{15}=\frac{5}{3}
$$

A general solution

A general solution

Since each node is the base of a particular Fibonacci tree, the number of leaf-nodes above it will simply be F_{k} for that sub-tree.

Note two things:

- $L=0$ will occur F_{k} times as each leaf-node in tree T_{k} has 0 nodes above it.
- Any other value $L=F_{r}$ where $r=$ $3, . ., k$ will be F_{k-r+1}.

A general solution

With this, we can define the following:

$$
\mu_{L}=\frac{2 F_{k-2}+3 F_{k-3}+5 F_{k-4}+\ldots+F_{k} \cdot 1}{N_{k}}=\frac{\sum_{r=3}^{k} F_{r} F_{k-r+1}}{2 F_{k}-1}=\frac{s_{k}}{2 F_{k}-1}
$$

And we can find the polynomial generating function for $\mathbf{s} \square$

$$
G(x)=\sum_{k=0}^{\infty} s_{k} x^{k}=\frac{x^{2}(2+x)}{\left(1-x-x^{2}\right)^{2}}
$$

What are generating functions?

Lets consider a simpler example, the fibonacci sequence, to understand generating functions.

Consider $0,1,1,2,3,5,8, \ldots$

$$
\begin{aligned}
& F_{k}=F_{k-1}+F_{k-2}, F_{0}= 0, \\
& F_{1}=1, k \geq 2 \\
& F_{k}-F_{k-1}-F_{k-2}=0
\end{aligned}
$$

Now let $H(x)=\sum_{k=0}^{\infty} F_{k} x^{k}$ be the generating function of the Fibonacci sequence.

$$
\begin{gathered}
H(x)=F_{0}+F_{1} x+F_{2} x^{2}+F_{3} x^{3}+F_{4} x^{4}+\ldots \\
-x H(x)=-F_{0} x-F_{1} x^{2}-F_{2} x^{3}-F_{3} x^{4}+\ldots \\
-x^{2} H(x)=-F_{0} x^{2}-F_{1} x^{3}-F_{2} x^{4}+\ldots
\end{gathered}
$$

So you end up with $H(x)\left(1-x-x^{2}\right)=F_{0}+\left(F_{1}-F_{0}\right) x=x$

$$
\begin{aligned}
H(x) & =\frac{x}{1-x-x^{2}} \\
& =\frac{x}{\left(x-\frac{-1+\sqrt{5}}{2}\right)\left(x-\frac{-1-\sqrt{5}}{2}\right.} \\
& =\frac{A}{x-\alpha}+\frac{B}{x-\beta} \\
& =\frac{\frac{A}{\alpha}}{\frac{x}{\alpha}-1}+\frac{\frac{B}{\beta}}{\frac{x}{\beta}-1} \\
& =\frac{-\frac{A}{\alpha}}{1-\frac{x}{\alpha}}+\frac{-\frac{B}{\beta}}{1-\frac{x}{\beta}} \\
& =\frac{-A}{\alpha} \sum_{k=0}^{\infty}\left(\frac{x}{\alpha}\right)^{k}-\frac{-B}{\beta} \sum_{k=0}^{\infty}\left(\frac{x}{\beta}\right)^{k} \\
& =\sum_{k=0}^{\infty} \frac{-A}{\alpha^{k+1}} x^{k}-\sum_{k=0}^{\infty} \frac{-B}{\beta^{k+1}} x^{k} \\
& =\sum_{k=0}^{\infty}\left(\frac{-A}{\alpha^{k+1}}+\frac{-B}{\beta^{k+1}}\right) x^{k}
\end{aligned}
$$

So $F_{k}=\frac{-A}{\alpha^{k+1}}+\frac{-B}{\beta^{k+1}}$

Back to our problem...

So how does this connect to the generating function from our problem?
Given $\mathrm{G}(\mathrm{x})$, we can find the power series for this polynomial using technology like WolframAlpha:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{25} x^{n}\left(2^{-1-2 n}(1+\sqrt{5})^{n}\right. \\
&\left.\quad\left(-8 \sqrt{5}\left(2^{n}-(-3+\sqrt{5})^{n}\right)-5(-3+\sqrt{5})^{1+n} n+5 \times 2^{n}(3+\sqrt{5}) n\right)\right)
\end{aligned}
$$

A different type of branching process

Imagine a population of individuals, where each person independently has k children in accordance with a probability distribution
$a=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$.
Let Z_{n} be the size of the $n^{\text {th }}$ generation for $n>=0$. If $Z_{0}=1$, then the sequence Z_{0}, Z_{1}, \ldots is a branching process.

Because the size of each successive generation Z_{n} depends only on the size of the previous generation $\mathrm{Z}_{\mathrm{n}-1}$, this branching process is a
 Markov chain.

References

- "On Caterpillars, Trees, and Stochastic Processes" by John C. Turner
- Chapter 4 of our class textbook

