
MARKOV CHAINS

& Computer Generated Music& Computer Generated Music

Introduction:
History of
Computer

Generated Music

Creating Markov
chain

Generating Music/
Understanding

Results

ContentContent

In the 18th, people played Musikalisches Würfelspiel (Musical Dice
Games), They would have tables where each square correlated to a
prewritten measure of music, and then would roll 2 6-sided dice to

determine the first measure, and then again for the second, generating a
short piece of music.

History: Music Dice GamesHistory: Music Dice Games

Pros &Cons of Music Dice GamesPros &Cons of Music Dice Games

6^16 = 2.82110991×10^12
potential arrangements
This was a seemingly great
way to generate “random”
music, especially when we
consider that Markov
Chains weren’t introduced
til 1906

Aren’t really generating
pieces

Music is pre-written,
the players are just
arranging it

Leaves us to question if we
could really randomly
generate music

PROS CONS

Early Computer Music GenerationEarly Computer Music Generation
Unlike Music Dice Games, couldn’t let notes be completely
independent

Would create a cacophony rather than “music”
Therefore, use markov chains to stop notes and duration
from being independent

First used Markov Chains & the ILLIAC I computer to
compose/generate Illiac Suite in 1957

Made of four movements, the first more simple, the second
created 4 vocal parts, the third was more modern and the
fourth was focused on what the system could create

Creating
Markov Chain

Creating
Markov Chain

Training data: estimates the
probabilities for the Markov chain
Nodes (states): sound objects-
contain information about a single
note/chord
Transition matrix
Initial probability vector: based on
number of times that the sound
object occurs in training data

Creating Markov chainCreating Markov chain
Transition matrix and initial probability distribution vector

Cannot calculate probability with multiple
voices/instruments simultaneously
Do not take the dynamics of the music into account
Hard to work with less tonal music (such as Jazz)
 Some of the issues can be addressed through other
statistical model (Hidden Markov Chain, etc)

Limitations with the researchLimitations with the research

 For each individual note and chords, four attributes have been extracted from the input music:

1) Notes: A, B, C, D, E, F, G,

 2) accidentals: including sharp, flat, or natural

 3) Octave of each note: by an integer from 0 to 8

 4) Whole note, half note, quarter note, or shorter value.

 These four attributes have been combined to be states. Then two dictionaries have been set to
save the transition frequency between states and then generate transition matrix of DTMC.

STEP 1: Parse the training music

Pitch

Octave

Duration

Generate music in PythonGenerate music in Python

Normalized transitional matrix of notes generated from the input music

Why the sum of
each row ≠ 1?

cumsum() Let the cumulative sums to 1!

(1)

(2)

 Last note

 Quarter rest

 First note

Last note becomes
an absorbing state?

Bonus: This method is also used in the default sample() function in R!

Our improvements: Not all durations are defaulted to be floating point numbers, especially source
files from different websites. We generalized its applicability to more types of music by conversions.

Drawed from a uniform distribution U(0,1)

STEP 2: Generate new musicSTEP 2: Generate new music
Line segment analogy

Initial
Vector

Transition
Matrix We can customize the length of music

Enjoy
the music!

Enjoy
the music!

Thank youThank you

