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A Real-World Markov Chain
Arising in Recreational Volleyball

Mina Dao, Siyi Zhu




Overview

The paper authored by David J. Aldous and Madelyn Cruz presents a Markov chain model to
understand the dynamics of team composition in recreational volleyball.

This research is motivated by the practical challenge of mixing players into teams such that
the team compositions change from game to game. It aims to offer a realistic model that
captures the nuances of player movement and team dynamics over successive games.
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Introduction and Model

Settings: 24 players -> 2 courts -> each with 2 team with 6
players on a half court. 7 or 8 successive games in 2-hour
period.

Rotations: At the end of one stage, the players in the back row

of each team stay in these positions for the start of the next
game, while the front row players move (clockwise in the gym)
to the same positions in the next quadrant.

State Space: {24!} (assignment to players to positions)
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Proofs

Irreducibility and Aperiodicity

Mixing Efficiency

The main focus of this paper is to
determine how effectively the described
protocol mixes the players. The analysis
reveals that the scheme tends to evenly
distribute players among teams over
several games, thus achieving a good level
of mixing as evidenced by the properties of
the Markov chain being doubly stochastic.
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Irreducibility

Notation

Each of the four quadrants (half-courts) is
labeled (A, B, C, D)

0 =< x < 5 indicates the number of positions

(modulo 6) rotated by the team in the
relevant quadrant

A.\'] C.\'z B.\’3 D.\’4
Symbol E : the final movement (the front
row players in each quadrant move to the
same positions in the next quadrant
Note: EEEE would code the identity move
(where it remain in original state)
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Figure 2. Left: labeling of the four quadrants. Right: rotations
involved in step A°C*BE.
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Figure 3. The effect of step A°C*BE.
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High-level description

N
012|345 0 1 2 9 3 4 01 2 3 4 5 210 3 45
6 7 8 9 10 1 _)67810115 6 7 8 9 10 11 6 7 8 9 10 11
9
12 13 14| |15 16 17 12 13 14| |15 16 17 12 13 14| |15 16 17 12 13 14| (15 16 17
18 19 20| |21 22 23 18 19 20| |21 22 23 18 19 20| |21 22 23 18 19 20| |21 22 23
Figure 4. The effect of sequence BEEEE. (b) Transpose two players in the same quadrant with one space in between (G).
R .
0 1 2|13 45 10 2113 45 ¢ 1 2 (3 45 8§ 1 2| (3 45
6 7 8 9 10 11 6 7 8 9 10 11 6 7 8 9 10 11 6 7 @ 9 10 11
—>
12 13 14| |15 16 17 12 13 14| |15 16 17 12 13 14| |15 16 17 12 13 14| |15 16 17
18 19 20| |21 22 23 18 19 20| |21 22 23 18 19 20| |21 22 23 18 19 20| |21 22 23
(c) Transpose two players in the same quadrant with two spaces in between (H).

(a) Transpose two adjacent players in the same quadrant (sequence F).

“Random adjacent transposition” shuffling scheme: Transpositions achieved by the specific sequences F, G, H
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High-level description

X := AE B?’D3EEE A’C’E B’D?EEE A’E B’EEE AE B’EEE AC?

0 1 2 3 45 1 0 2 4 7 8
6 7 8 9 10 11 5 3 6 9 10 11
—
12 13 14| |15 16 17 12 13 14| |15 16 17
18 19 20| |21 22 23 18 19 20| (21 22 23
Figure 6. The effect of sequence X.
l. EEEEX 2. X 3. XEEEE
1 0 2 4 7 8 0 1 2 7 3 6 1 0 2 3 4 5
5 3 6 9 10 11 8 4 5 9 10 11 6 7 8 9 10 11
12 13 14 15 16 17 12 13 14 15 16 17 12 13 14 15 16 17
18 19 20 21 22 23 18 19 20 21 22 23 18 19 20 21 22 23

Figure 8. Step-by-step trajectory of sequence F.
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Aperiodicity

Self-loops:

i) We know from previous sequence : we can move from one
state to that same state in four steps—E E E E

ii) It's also possible to remain in the same state in the transition
matrix for some odd n.

(There are 163 E’s in the unexpanded notation, and 68, 424,
and 340 steps from the one F, two G’s, andone H, respectively,
so there are 995 steps in this sequence.)

1-13. AEEEE AEAE CE
DEEEE DEDE (move to a cer-
tain other arrangement)

14 7 6 3 4 5
0 21 22|18 2 1

23 15 16|18 11 10
19 20 9 |13 12 17

33-57. CEEEE CEEEE
CEEE AEEEE AEEE CEEE
CEEEE C (fixing back row of C)

11 10 14}/ 3 4 5
9 16 15|18 2 1

17 12 0|13 7 6
18 19 20|21 22 23

68-87. BAEEEE AEBEEE
AEBE BEEEE BEEEE BEE
(fixing (14,13,12) using Procedure B
then some migration)

0o 7 6|1 2 8
4 9 3|10 5 11

12 13 14(|15 16 17
18 19 20(|21 22 23

100-135. AEEEE AEEEE
AGAEEEE AEEEE AEEEE
AEEE AEEEE  AEEEE
AEEEE AE (fixing (9,10,11)
using Steps 15 and 16 of the
algorithm)

0 2 8|3 4 5
6 1 719 10 11

12 13 14(|15 16 17
18 19 20(|21 22 23

14-32. EEDEEEE DEEEE
DEE CEEEE CEEE D (fixing
back row of D)

14 7 6|13 4 5
8 2 1|10 11 18

17 12 13}/ 0 20 19
9 16 15|21 22 23

58-67. EAEEEE AEBEE AE
BBBBBE (fixing (17,16,15) using
Procedure B then some migration)

9 12 0|3 4 11
6 7 13||14 10 5

12 8 ||15 16 17
18 19 20|21 22 23

88-99. BEEEE BEBEEE
AEBEEE (fixing (5,4,3) using Pro-
cedure B)

9 0 71({3 4 5
1 6 10(|11 8 2

12 13 14]|15 16 17
18 19 20|21 22 23

136-163. AEEEE AHA AGA
AEEEE AEEEE AEEEE
AFAEEEE AEEEE AEEEE
(fixing A)

0 1 2|3 4 5
6 1 7|9 10 11

12 13 14|15 16 17
18 19 20|21 22 23
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The friend chain

Describe the state:

*

*

The quadrantegoisin
o 1~quadrantC
o 2~quadrantA
The position of friend
relative to ego
o T:Inthe sameteam
o O:Inthecurrent
opposing team
o  Ontheother court:
1+,1-, 2+, 2-
friend’s position: 1,2, 3,4, 5,
or 6, counterclockwise from
ego or ego* (opponent in the
same position as ego)

A 26-state chain indicating the relative position

of ego and friend (by symmetry)

The process is invariant under a half-turn.

2T5

2T6

2T4

2T3

2T2

202

203

201

204

206

205

all 2+

all 2-

101

102

106

103

105

104

1T4

1T3

1T6

1T2

all 14

all 1-

ego e in second half-court

ego e in first half-court
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Transition
matrix for the
friend chain

The stationary distribution =
is induced from the uniform
stationary distribution of the
big chain:

*

*

probability 6/46 for the
states 1+, 1-, 2+, 2-

probability 1/46 for the
22 remaining states.
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Numerics for the friend chain

Standard theory quantifies “closeness to Another measure of distance to stationarity
stationarity after n steps” via variation is the > or the x* distance. The L? distance
distance d*(n) or separation distance s*(n) between P. and the stationary distribution 1
from worst-case start. after nstepsis
2
J
d”(n) := max 5 E |Pij —7jl, I1P" (G, )—nllz—\/E
)=zl pg/m) | P" — ]2 = max ||P"(i, ) =7ll2.
1
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Numerics for the friend chain

n | 2 3 4 5 6 7 8 9

d*(n) |10.957 0.638 0.375 0.263 0.180 0.122 0.083 0.058 0.040
s*(n) 1 1 1 0933 0.508 0.374 0.297 0.223 0.160
L%(n) |4.690 2.254 1.544 1.05 0.71 0.492 0.339 0.233 0.159

Table 1. Measures of distance to stationarity for the friend chain,
after n games.
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Measures of distance to stationarity for the friend chain
== d*(n) s*(n) == L%(n)

N W B~ O

number of games
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Numerics

If friend is playing with or against ego, the mean number of
games in which friend is on the opposite team (or the same
team) can be computed depending on the distance from
friend’s initial position to ego or ego™s initial position.

start | 1+ 1= 172 (T3 174 (AT5 176 101 102 (103 104 105 106
OT | 1.607 1962 1.803 2.107 2.222 2.107 1.803 3.059 2.894 2.606 2.482 2.606 2.894
ST | 1.093 (1.515 3.773 @725) 2314 2725 3.773 1421 1.499 @550 1.523 @i550) 1.499

Table 2. Mean number of games (out of eight) in which friend is

on the opposite team OT (and the same team ST) as ego, who starts

in the first quadrant.
start | 272 2T3) 274 (2T5 276 201 202 203 204 @05 206 2+ 2—
OT |1.493 1.678 1.700 1.678 1.493 3.059 2.894 2.606 2.482 2.606 2.894 1.962 1.940
ST |3.778 (2.698 2297 (2.698 3.778 1421 1.499 (1.550 1.523 (1550 1.499 1.515 1.103

Table 3. Mean number of games (out of eight) in which friend is
on the opposite team OT (and the same team ST) as ego, who starts
in the second quadrant.
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Fundamental matrix of the friend chain

Consider an absorbing Markov chain on k states for which t states
are transient and k — t states are absorbing. The canonical form of
transition matrix P is: P (
Dimension:
* Qisatxtmatrix
* Risatx(k-t)matrix
* Oisa(k-t)xtmatrix of Os
* listhe (k - t)x(k - t) identity matrix.

The fundamental matrix F determines the mean time to go from F = (I . Q)—l
one given initial state to another given target state. ’
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Fundamental matrix of the friend chain

We can pick the target state(s) and make them into absorbing state(s).

Suppose ego’s position is randomized in the left court. We will calculate how long it takes for
friend to be right next to ego in quadrant 1.

That is, either 1T2 or 1Té is an absorbing state.

In this case, the fundamental matrix of the absorbing chain is a 25 x 25 matrix.
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1+
93.14581
213
92.29228

1+
93.14581
273
92.74179

Fundamental matrix

We can observe that there is a symmetry property in the number of games which confirms the
claim that the number of games depends on friend’s shortest distance to ego.

g2
90.77034

2T4
91.77034

1
90.77034

2T4
91.77034

173
92.38001
2T5
92.74179

172
95.29642
2T5
92.29228

174
94.42458
276
94.53338

173
94.62757
276
46.88517

175
94.62757
201
90.09790

174
94.42458
201
90.09790

1Te
95.29642
202
88.11483

175
92.38001
202
93.05945

101
90.09790
203
90.90195

101
90.09790
203
93.59902

102
88.11483
204
93.42458

102
93.05945
204
93.42458

103
90.90195
205
93.59902

103
93.59902
205
90.90195

104
93.42458
206
93.05945

104
93.42458
206
88.11483

105
93.59902
2+
90.77034

105
90.90195
2+
90.77034

106
93.05945
9=
93.89675

106
88.11483
D
93.89675

272
46.88517

272
94.53338
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Final Remarks

i

e,g“ J

Card Shuffling Analogy

“7 shuffles are necessary and suffice to approximately
randomize 52 cards” - Diaconis
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Thank youl.
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