Def A random variable \overline{X} has the Bernsulli distribution with parameter $P \in (0,1)$ if its range is $\{0,1\}$ and $P(\overline{X}=k) = \begin{cases} P & \text{if } k=1 \\ 1-P & \text{if } k=0 \end{cases}$

Shorthand: we write X ~ Ber (p)

"is distributed as"

Remark We often use Bernsulli random variables for modeling a single trial in a "success or failure" experiment.

Def Two random variables are independent if $P(\overline{X}=x, \overline{Y}=y) = P(\overline{X}=x) P(\overline{Y}=y) \text{ for all } x,y \text{ in their respective ranges.}$

Example Consider the experiment of torring a biased coin (with heads probability $p \neq \frac{1}{2}$) 15 times. Express the event of getting exactly

(O heads (2) 1 heads (3) 2 heads in tems of Bernoulli random variables and find its probability.

Let
$$X_k = \begin{cases} 1 & \text{if toss } k \text{ is heads} \\ 0 & \text{if toss } k \text{ is tails.} \end{cases}$$

Then $\overline{X}_1, \dots, \overline{X}_{15} \sim \text{Ber}(p)$ are independent and identically distributed (i.i.d.) random variables.

Our event is
$$\{\overline{X}_1 + \dots + \overline{X}_{15} = 0\}$$
 and
$$P(\overline{X}_1 + \dots + \overline{X}_{15} = 0) = P(\overline{X}_1 = 0, \dots, \overline{X}_{15} = 0)$$
$$= (1-p)^{15}$$

(2)
$$\left\{ \overline{X}_1 + \cdots + \overline{X}_{1c} = 1 \right\}$$
 and

$$\begin{array}{ll}
P\left(\overline{X}_{1}+\cdots+\overline{X}_{ls}=1\right) &=& P\left(\overline{X}_{1}=l_{1},\overline{X}_{2}=o_{1},\ldots,\overline{X}_{ls}=o\right) \\
&+& P\left(\overline{X}_{1}=o_{1},\overline{X}_{2}=l_{1},\overline{X}_{3}=o_{1},\ldots,\overline{X}_{ls}=o\right) \\
&-\cdots+P\left(\overline{X}_{1}=o_{1},\ldots,\overline{X}_{ls}=o,\overline{X}_{ls}=l_{1}\right) \\
&=& |S|_{P}\left(|I-P|_{P}\right)^{lip}
\end{array}$$

(3)
$$P(\overline{X}_1 + \cdots + \overline{X}_{|S|} = 2) = {\binom{|S|}{2}} P^2 (|-|p|)^{13}$$

Det A random variable \overline{X} has the binomial distribution with parameters n and p if its range is $\{0,1,2,...,n\}$ and $P(\overline{X}=k)=\binom{n}{k}p^k(1-p)^{n-k} \text{ for } k=0,1,...,n.$

Shorthand: \(\overline{\Sim}\) ~ Bin (n,p).

Remarks () if $\overline{X}_0, \dots, \overline{X}_n$ are i.i.d. Ber (p), then $\overline{X} = \overline{X}_1 + \dots + \overline{X}_n \quad \text{is} \quad \text{Bin}(n,p) \quad \text{distributed}.$

(3) $\overline{X} \sim \text{Bin}(n,p)$ counts the number of successes in n independent trials of a success/failure experiment where the success probability is p.

R commands if $\overline{X} \sim \beta_{in}(n,p)$, then

- $P(\overline{X} = k)$ can be computed with abinom (k, n, p)
- · P(Xsk) with phinum (k,n,p)
- o we can get an i.i.d. sample of size k with v binom (k, n, p)

Example Consider rolling a 4-sided die 13 times. Let

X count the number of times 2 comes up.

Find the probability of getting

(1) exactly 6 2's.

(2) at least 6 2's.

Notice X ~ Bin (13, 1/4). Therefore

$$\bigcirc \qquad P(\overline{X} = b) = \binom{13}{6} (\frac{1}{4})^6 (\frac{3}{4})^7$$

can be compute with R command dbinom (6, 13, 1/4)

(a)
$$P(\overline{X} \ge 6) = P(\overline{X} = 6) + P(\overline{X} = 7) + \dots + P(\overline{X} = B)$$

$$= 1 - P(\overline{X} < 6)$$

$$= (-P(\overline{X} \le 5))$$

$$= 1 - (P(\overline{X} = 6) + P(\overline{X} = 1) + \dots + P(\overline{X} = 5))$$

can be computed with R command $1 - p \, binom \, (5, 13, 14)$

Problem 1. Consider an urn which contains 12 red, 2 green, and 3 blue balls. We draw from the urn 14 times, sampling with replacement, and let X count the number of times we drew a green ball.

- a. The random variable X is binomially distributed. What are the parameters n and p?
- b. Express each of the following events in terms of X and compute its probability
 - 1. Exactly 1 draw is green
 - 2. At least 1 draw is green
 - 3. Exactly 4 draws are green
 - 4. At least 4 draws are green
 - 5. At least 3 but no more than 8 draws are green
- c. If we change our experiment so that sampling is done without replacement, is it still the case that X is binomially distributed? Why or why not?

(a)
$$n = 14$$
, $p = \frac{2}{17}$

$$\mathbb{D}_{0}$$
 $\mathbb{P}(\overline{X}=1)$

$$\bigcirc P(\overline{X}=4)$$

$$\circ P(\overline{X} = 4)$$

Problem 1

```
% (r)
dbinom(1, 14, 2/17)
1-dbinom(0, 14, 2/17)
dbinom(4, 14, 2/17)
1-pbinom(3, 14, 2/17)
pbinom(8, 14, 2/17) - pbinom(2, 14, 2/17)
```

```
[1] 0.323638
```

@ No, trials no longer independent and ho longer have constant success probability

Problem 2. Suppose we have an 8×8 grid of squares. For each square in the grid, we roll a die and color the square black if a prime number is rolled and white if a non-prime is rolled. Let X be the number of black squares in the grid after completing this coloring process.

- a. What are the independent trials in this experiment? What corresponds to a successful trial?
- b. The random variable X has binomial distribution. What are the parameters n and p?
- c. Express each of the following events in terms of X and compute its probability
 - 1. Exactly 31 squares are colored black
 - 2. At least 31 squares is colored black
 - 3. Exactly 37 squares are colored black
 - 4. At most 57 squares are colored black

(b)
$$n = 64$$
, $p = \frac{1}{2}$

 ${\bf Problem~3.}$ Consider the following checklist to determine whether a random variable X has the binomial distribution.

- $\bullet\,$ Does the experiment involve a predetermined number of trials?
- $\bullet\,$ Does each trial result in two possible outcomes, success or failure?
- $\bullet\,$ Is the success probability the same for each trial?
- Is each trial independent?

Use this checklist to identify whether or not a random variable X has a binomial distribution. If it does, give n and p and explain any assumptions you're making; if not, explain why not.

- a. We make 100 tosses of a coin with heads probability 1/3 and let X count the number of tails.
- Each day Amy goes out for lunch, there is a 25% chance she will choose pizza. Let X be the number of times she chose pizza in the last 10 days.
- c. Brenda plays basketball, and there is a 60% she makes a free throw. Let X be the number of successful baskets she makes in a game.
- d. A bowl contains 100 red can dies and 150 blue can dies. Carl reaches in and takes out a sample of 10 can dies. Let \boldsymbol{X} be the number of red can dies in his sample.
- e. Evan is reading a 600-page book. On even-numbered pages, there is a 1% chance of a typo. On odd-numbered pages, there is a 2% chance of a typo. Let X be the number of typos in the bode.

Problem 2

```
% {r}
knitr::opts_chunk$set(echo = TRUE, options(digits = 15))
dbinom(31, 64, 1/2)
1-pbinom(30, 64, 1/2)
dbinom(37, 64, 1/2)
pbinom(57, 64, 1/2)
```

- [1] 0.0963362460586346
- [1] 0.646009622932617
- [1] 0.0458962825684751
- Г17 0.99999999995486

- @ yes, n=100, p=2/3
- 6 yes, n = 10, p = 0.25 assuming days are independent
- @ no, no fixed number of trials
- @ no, no fixed success prob. (unless sampling with replacement)
- @ no, no fixed success prob.